
CS
omputer

cience

Foundations

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 1 / 31

COS 140: Foundations of Computer Science

CPU Organization and Assembly Language

Fall 2018

CS
omputer

cience

Foundations

Homework, etc.

CPU

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 2 / 31

• Reading

◦ Chapter 14

◦ Appendix A is there as well

• Homework: Exercises at end of Chapter 14, due 10/17 (later than

usual)

• Prelim I: Friday, 10/12

◦ Detailed questions (e.g., problems) on material up through

RAID

◦ Conceptual questions on all material up to & including today’s

material

CS
omputer

cience

Foundations

Central Processing Unit

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 31

• Part of the computer that carries out the instructions of programs

• Controls the other two parts (memory, I/O).

• This class:

◦ CPU organization

◦ Machine (and assembly) language introduction

CS
omputer

cience

Foundations

Components of the CPU

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 31

Arithmetic and logic unit (ALU): where actual computation takes

place

Control unit (CU): controls moving information around in CPU,

placing data in registers, getting new instructions from memory,

ALU function, etc.

Registers: memory for CPU operation

CS
omputer

cience

Foundations

Registers

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 31

• Registers virtually all CPUs have:

◦ program (or instruction) counter

◦ program status word (PSW)

◦ instruction register

CS
omputer

cience

Foundations

Design Issues for Registers

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 31

• User accessible or protected?

◦ Want to protect the machine, other users from the user

◦ PSW – probably protected

◦ Instruction counter: generally protected, but some special

instructions for changing (e.g., branch, subroutine

instructions)

◦ Data registers: user accessible (via instructions)

CS
omputer

cience

Foundations

Design Issues for Registers

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 31

• General-purpose or special-purpose?

◦ General-purpose ⇒ flexibility

◦ Special-purpose ⇒ reduce number of operands or operand

size

◦ Mixed: some special-purpose registers that are used as

general-purpose registers by some instructions

◦ Different size registers for different purposes

CS
omputer

cience

Foundations

Design Issues for Registers

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 31

• General-purpose or special-purpose?

◦ General-purpose ⇒ flexibility

◦ Special-purpose ⇒ reduce number of operands or operand

size

◦ Mixed: some special-purpose registers that are used as

general-purpose registers by some instructions

◦ Different size registers for different purposes

• Size?

◦ Need to hold largest operand required

◦ Sometimes use multiple registers for single operand

CS
omputer

cience

Foundations

Design Issues for Registers

CPU

• Components of the

CPU

• Registers

• Register design

issues

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 31

• General-purpose or special-purpose?

◦ General-purpose ⇒ flexibility

◦ Special-purpose ⇒ reduce number of operands or operand

size

◦ Mixed: some special-purpose registers that are used as

general-purpose registers by some instructions

◦ Different size registers for different purposes

• Size?

◦ Need to hold largest operand required

◦ Sometimes use multiple registers for single operand

• Who saves them when needed (on interrupt) – software or

hardware?

CS
omputer

cience

Foundations

Machine Language

CPU

Assembly Language

• Machine Language

• Assembly Language

• Instruction Execution

• Instruction Format

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 31

• Instruction set: instructions CPU can carry out

• Each: Op code & ≥ 0 operands

• Operands include addresses and data.

• Op codes, operands: binary numbers—of course.

• Instuctions are the machine language

• Difficult for humans to use!

CS
omputer

cience

Foundations

Assembly Language

CPU

Assembly Language

• Machine Language

• Assembly Language

• Instruction Execution

• Instruction Format

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 31

• Symbolic version of machine language.

• Op codes represented by mnemonics – e.g.,

◦ Machine language: addition op code might be 001001

◦ Assembly language: might represent as ADD

◦ Operands can be symbolic: names for constants, memory

locations

◦ Assembler translates assembly language program →
machine language

CS
omputer

cience

Foundations

Instruction Execution

CPU

Assembly Language

• Machine Language

• Assembly Language

• Instruction Execution

• Instruction Format

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 31

• Fetch instruction from memory

• Decode instruction

• Fetch operands (if any)

• Carry out instruction

• Store results (if any)

CS
omputer

cience

Foundations

Instruction Format

CPU

Assembly Language

• Machine Language

• Assembly Language

• Instruction Execution

• Instruction Format

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 31

• Specification of action to be done: op code

• Addresses of any operands

• Address of any result to be stored

• E.g., add register 0 to register 1

◦ Assembly lang: ADD R0,R1

◦ Instruction: 01000 | 000 | 0000 | 00 | 01
◦ 5 bit op code, 3 bits unused, 4 bits for mode (direct, direct),

R0, R1

CS
omputer

cience

Foundations

Types of Instructions

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 31

• Data transfer

• Arithmetic operations

• Logical operations

• Transfer of control

• System control

CS
omputer

cience

Foundations

Data Transfer Instructions

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 31

• Move data from place to place

• Source, destination could be registers, memory

• Different addressing modes possible (see later)

• Size of transfer: on some machines, amount can be large

CS
omputer

cience

Foundations

Arithmetic Operations

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 31

• Almost all CPUs (i.e., their ALUs) provide ADD, SUB, MULT, and

DIV

• Why include SUB – could use ADD and complement second op?

• Usually provide for signed integers, other types (e.g., floating

point)

• Usually have to move the operand’s data to location where ALU

expects it (e.g., a register)

CS
omputer

cience

Foundations

Logical operations

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 31

• Usually provide AND, OR, NOT, XOR, EQUAL, SHIFT, ROTATE,

maybe arithmetic shift (sign bit propagated)

• Why include all these, when you can do it all with NAND?

• What about complement? Can you do it with XOR? with NOT?

• How would you mask (clear) particular bits?

• How would you set particular bits?

CS
omputer

cience

Foundations

Transfer of control

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 31

• Branch (jump) instructions

◦ Unconditional and conditional

◦ Absolute or relative

• Subroutine call and return

CS
omputer

cience

Foundations

System control

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 31

• Protected operations – only executable by some processes (e.g.,

operating system)

• Use to access protected registers, protected memory, etc.

• Input/output instructions are usually protected

CS
omputer

cience

Foundations

Number of Instructions

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 31

• One philosophy: have relatively few, simple instructions

◦ Allows instructions to be optimized

◦ Requires less chip space (⇒ cheaper, or more other things

can be put on chip)

◦ Components can be closer to each other (⇒ faster)

◦ Reduced instruction set computers (RISC)

◦ Examples: SPARC chips in Sun machines, PowerPC in older

Macs

CS
omputer

cience

Foundations

Number of Instructions

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 31

• Other philosophy: have a large number of instructions, including

special-purpose ones (e.g., multimedia, etc.)

◦ Makes it easier for programmers

◦ Requires less memory, less disk space for programs

◦ Complex instruction set computers (CISC)

◦ Examples: Intel family of processors

CS
omputer

cience

Foundations

Data Types

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 31

• Numbers:

◦ Integers (sign-magnitude, 2’s complement, packed decimal)

◦ Floating point

◦ Size: single, double, etc.

• Characters:

◦ Encoded as ASCII or Unicode characters these days

◦ Single byte (ASCII) or two or more bytes (Unicode) in length

◦ Strings of characters: length + string or null-terminated

• Logical data

• General bit strings: e.g., for multimedia, etc.

CS
omputer

cience

Foundations

Addressing Modes

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 31

• Different instructions have different addressing modes

• Determines where the data corresponding to the operands is

• E.g.: think of operand as name of data’s location

• Modes: immediate, direct, indirect, register, register indirect,

displacement, others

• Issues:

◦ Which one should CPU use for instruction?

• Sometimes indicated by op code

• Sometimes indicated by mode bits that can be set

◦ How many bits are required for instruction?

◦ How many memory references are required to find effective

address (where the data is actually located)?

CS
omputer

cience

Foundations

Immediate Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 31

• Operand’s data is the operand itself: i.e., in instruction

• E.g., NEG #5 might mean “negate 5, leave result in register 0”

• How many bits needed?

◦ Generally: fixed-size field in the instruction for operand

◦ Generally limited to integers (2’s complement) or characters

• Operand memory accesses: none

CS
omputer

cience

Foundations

Direct Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 23 / 31

• Operand contains memory address of the data

• E.g.: NEG 8: negate the value of the data located at memory

location 8

• Number of bits needed?

◦ Varies between computers, maybe between instructions

◦ With n bits devoted to address, can refer to 2
n addresses in

memory

◦ Up to size of word

CS
omputer

cience

Foundations

Direct Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 24 / 31

• Operand memory accesses: one per operand

A
dd

re
ss

CPU

Mem

D
at

a
Busses

1

2

3

4

CS
omputer

cience

Foundations

Indirect Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 31

• Operand contains the address of the address of the

data

• E.g.: NEGI 8: if address 8 contains 24, then the

actual data that would be negated would be what’s

stored at memory location 24

CS
omputer

cience

Foundations

Indirect Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 31

• Operand contains the address of the address of the

data

• E.g.: NEGI 8: if address 8 contains 24, then the

actual data that would be negated would be what’s

stored at memory location 24

48
44
40
36
32
28
24
20
16
12
8
4
0

.

.

.

24

1010

CS
omputer

cience

Foundations

Indirect Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 31

• Operand contains the address of the address of the

data

• E.g.: NEGI 8: if address 8 contains 24, then the

actual data that would be negated would be what’s

stored at memory location 24

48
44
40
36
32
28
24
20
16
12
8
4
0

.

.

.

24

1010

• Number of bits needed – same as for direct address-

ing

CS
omputer

cience

Foundations

Indirect Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 26 / 31

• Operand memory accesses needed: two per operand

A
dd

re
ss

CPU

Mem

D
at

a
Busses

1

2

3

4
5

6

7

8

CS
omputer

cience

Foundations

Register Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 27 / 31

• Implicit ⇐ op code specifies which register is used

• Explicit ⇐ operand specifies which register

• E.g.: NEG R5 – negate the data contained in register 5

• Number of bits needed? Usually few, since number of registers

limited.

• Operand memory accesses: none

◦ Only requires access to register, which is quick

◦ Only really efficient if register used over and over – otherwise,

have to load the register, which could be more inefficient than

direct addressing

• RISC machines make heavy use of register addressing – e.g.,

PowerPC forces this for all arithmetic operations

CS
omputer

cience

Foundations

Register Indirect Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 28 / 31

• Register contains address of the data

• E.g.: NEGI R5 – if register 5 contains the value 24, then the data

would be found at address 24

• Number of bits needed? Same as register addressing

• Operand memory accesses: one per operand access

• When would this be useful?

CS
omputer

cience

Foundations

Other Addressing Modes

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 31

• Relative displacement addressing: used for jumps (branches)

relative to program counter

• Base register displacement addressing: have a base register to

which all addresses are added

CS
omputer

cience

Foundations

Designing Instruction Sets

CPU

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 31

• Which operations to support

◦ Memory-mapped I/O or special instructions?

◦ How many instructions to support? RISC or CISC?

• Format of instructions:

◦ Size of instruction: part of word, word, multiple words?

◦ All instructions same size or not?

◦ Fields within instruction?

◦ All instructions with same format or not?

◦ Address modes?

◦ Number of registers?

◦ Addressing granularity?

CS
omputer

cience

Foundations

Abstraction hierarchy

CPU

Assembly Language

Instruction Types

Addressing Modes

Instruction Set Design

Abstraction

• Abstraction hierarchy

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 31

Transistors, etc.

Gates

Functional units

CPU’s API

 Symbolic API

Problem-Oriented
Language Level

Assembly Language
Level

Conventional
Machine Level

Microprogramming
Level

Digital Logic
Level

Device Level

High-level language:
e.g., C, C++, Java, Lisp,

Ada, FORTRAN, ...

	Homework, etc.
	CPU
	Central Processing Unit
	Components of the CPU
	Registers
	Design Issues for Registers
	Design Issues for Registers

	Assembly Language
	Machine Language
	Assembly Language
	Instruction Execution
	Instruction Format

	Instruction Types
	Types of Instructions
	Data Transfer Instructions
	Arithmetic Operations
	Logical operations
	Transfer of control
	System control
	Number of Instructions
	Number of Instructions
	Data Types

	Addressing Modes
	Addressing Modes
	Immediate Addressing
	Direct Addressing
	Direct Addressing
	Indirect Addressing
	Indirect Addressing
	Register Addressing
	Register Indirect Addressing
	Other Addressing Modes

	Instruction Set Design
	Designing Instruction Sets

	Abstraction
	Abstraction hierarchy

