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COS 140: Foundations of Computer Science

CPU Organization and Assembly Language

Fall 2018
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• Reading

◦ Chapter 14

◦ Appendix A is there as well

• Homework: Exercises at end of Chapter 14, due 10/17 (later than

usual)

• Prelim I: Friday, 10/12

◦ Detailed questions (e.g., problems) on material up through

RAID

◦ Conceptual questions on all material up to & including today’s

material
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• Part of the computer that carries out the instructions of programs

• Controls the other two parts (memory, I/O).

• This class:

◦ CPU organization

◦ Machine (and assembly) language introduction
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Arithmetic and logic unit (ALU): where actual computation takes

place

Control unit (CU): controls moving information around in CPU,

placing data in registers, getting new instructions from memory,

ALU function, etc.

Registers: memory for CPU operation
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• Registers virtually all CPUs have:

◦ program (or instruction) counter

◦ program status word (PSW)

◦ instruction register
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• User accessible or protected?

◦ Want to protect the machine, other users from the user

◦ PSW – probably protected

◦ Instruction counter: generally protected, but some special

instructions for changing (e.g., branch, subroutine

instructions)

◦ Data registers: user accessible (via instructions)
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• General-purpose or special-purpose?

◦ General-purpose ⇒ flexibility

◦ Special-purpose ⇒ reduce number of operands or operand

size

◦ Mixed: some special-purpose registers that are used as

general-purpose registers by some instructions

◦ Different size registers for different purposes
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• General-purpose or special-purpose?

◦ General-purpose ⇒ flexibility

◦ Special-purpose ⇒ reduce number of operands or operand

size

◦ Mixed: some special-purpose registers that are used as

general-purpose registers by some instructions

◦ Different size registers for different purposes

• Size?

◦ Need to hold largest operand required

◦ Sometimes use multiple registers for single operand
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• General-purpose or special-purpose?

◦ General-purpose ⇒ flexibility

◦ Special-purpose ⇒ reduce number of operands or operand

size

◦ Mixed: some special-purpose registers that are used as

general-purpose registers by some instructions

◦ Different size registers for different purposes

• Size?

◦ Need to hold largest operand required

◦ Sometimes use multiple registers for single operand

• Who saves them when needed (on interrupt) – software or

hardware?
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• Instruction set: instructions CPU can carry out

• Each: Op code & ≥ 0 operands

• Operands include addresses and data.

• Op codes, operands: binary numbers—of course.

• Instuctions are the machine language

• Difficult for humans to use!
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• Symbolic version of machine language.

• Op codes represented by mnemonics – e.g.,

◦ Machine language: addition op code might be 001001

◦ Assembly language: might represent as ADD

◦ Operands can be symbolic: names for constants, memory

locations

◦ Assembler translates assembly language program →
machine language
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• Fetch instruction from memory

• Decode instruction

• Fetch operands (if any)

• Carry out instruction

• Store results (if any)
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• Specification of action to be done: op code

• Addresses of any operands

• Address of any result to be stored

• E.g., add register 0 to register 1

◦ Assembly lang: ADD R0,R1

◦ Instruction: 01000 | 000 | 0000 | 00 | 01
◦ 5 bit op code, 3 bits unused, 4 bits for mode (direct, direct),

R0, R1



CS
omputer

cience

Foundations

Types of Instructions

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 31

• Data transfer

• Arithmetic operations

• Logical operations

• Transfer of control

• System control
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• Move data from place to place

• Source, destination could be registers, memory

• Different addressing modes possible (see later)

• Size of transfer: on some machines, amount can be large
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• Almost all CPUs (i.e., their ALUs) provide ADD, SUB, MULT, and

DIV

• Why include SUB – could use ADD and complement second op?

• Usually provide for signed integers, other types (e.g., floating

point)

• Usually have to move the operand’s data to location where ALU

expects it (e.g., a register)
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• Usually provide AND, OR, NOT, XOR, EQUAL, SHIFT, ROTATE,

maybe arithmetic shift (sign bit propagated)

• Why include all these, when you can do it all with NAND?

• What about complement? Can you do it with XOR? with NOT?

• How would you mask (clear) particular bits?

• How would you set particular bits?
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• Branch (jump) instructions

◦ Unconditional and conditional

◦ Absolute or relative

• Subroutine call and return



CS
omputer

cience

Foundations

System control

CPU

Assembly Language

Instruction Types

• Types of Instructions

• Data Transfer

Instructions

• Arithmetic Operations

• Logical operations

• Transfer of control

• System control

• Number of

Instructions

• Data Types

Addressing Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 31

• Protected operations – only executable by some processes (e.g.,

operating system)

• Use to access protected registers, protected memory, etc.

• Input/output instructions are usually protected
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• One philosophy: have relatively few, simple instructions

◦ Allows instructions to be optimized

◦ Requires less chip space (⇒ cheaper, or more other things

can be put on chip)

◦ Components can be closer to each other (⇒ faster)

◦ Reduced instruction set computers (RISC)

◦ Examples: SPARC chips in Sun machines, PowerPC in older

Macs
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• Other philosophy: have a large number of instructions, including

special-purpose ones (e.g., multimedia, etc.)

◦ Makes it easier for programmers

◦ Requires less memory, less disk space for programs

◦ Complex instruction set computers (CISC)

◦ Examples: Intel family of processors
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• Numbers:

◦ Integers (sign-magnitude, 2’s complement, packed decimal)

◦ Floating point

◦ Size: single, double, etc.

• Characters:

◦ Encoded as ASCII or Unicode characters these days

◦ Single byte (ASCII) or two or more bytes (Unicode) in length

◦ Strings of characters: length + string or null-terminated

• Logical data

• General bit strings: e.g., for multimedia, etc.



CS
omputer

cience

Foundations

Addressing Modes

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 31

• Different instructions have different addressing modes

• Determines where the data corresponding to the operands is

• E.g.: think of operand as name of data’s location

• Modes: immediate, direct, indirect, register, register indirect,

displacement, others

• Issues:

◦ Which one should CPU use for instruction?

• Sometimes indicated by op code

• Sometimes indicated by mode bits that can be set

◦ How many bits are required for instruction?

◦ How many memory references are required to find effective

address (where the data is actually located)?



CS
omputer

cience

Foundations

Immediate Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 31

• Operand’s data is the operand itself: i.e., in instruction

• E.g., NEG #5 might mean “negate 5, leave result in register 0”

• How many bits needed?

◦ Generally: fixed-size field in the instruction for operand

◦ Generally limited to integers (2’s complement) or characters

• Operand memory accesses: none
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• Operand contains memory address of the data

• E.g.: NEG 8: negate the value of the data located at memory

location 8

• Number of bits needed?

◦ Varies between computers, maybe between instructions

◦ With n bits devoted to address, can refer to 2
n addresses in

memory

◦ Up to size of word
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• Operand memory accesses: one per operand

A
dd

re
ss

CPU

Mem

D
at

a
Busses

1

2

3

4
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• Operand contains the address of the address of the

data

• E.g.: NEGI 8: if address 8 contains 24, then the

actual data that would be negated would be what’s

stored at memory location 24
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• Operand contains the address of the address of the

data

• E.g.: NEGI 8: if address 8 contains 24, then the

actual data that would be negated would be what’s

stored at memory location 24

48
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24
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1010
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• Operand contains the address of the address of the

data

• E.g.: NEGI 8: if address 8 contains 24, then the

actual data that would be negated would be what’s

stored at memory location 24

48
44
40
36
32
28
24
20
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8
4
0

.

.

.

24

1010

• Number of bits needed – same as for direct address-

ing
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• Operand memory accesses needed: two per operand

A
dd

re
ss

CPU

Mem

D
at

a
Busses

1

2

3

4
5

6

7

8



CS
omputer

cience

Foundations

Register Addressing

CPU

Assembly Language

Instruction Types

Addressing Modes

• Addressing Modes

• Immediate

Addressing

• Direct Addressing

• Direct Addressing

• Indirect Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect

Addressing

• Other Addressing

Modes

Instruction Set Design

Abstraction

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 27 / 31

• Implicit ⇐ op code specifies which register is used

• Explicit ⇐ operand specifies which register

• E.g.: NEG R5 – negate the data contained in register 5

• Number of bits needed? Usually few, since number of registers

limited.

• Operand memory accesses: none

◦ Only requires access to register, which is quick

◦ Only really efficient if register used over and over – otherwise,

have to load the register, which could be more inefficient than

direct addressing

• RISC machines make heavy use of register addressing – e.g.,

PowerPC forces this for all arithmetic operations
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• Register contains address of the data

• E.g.: NEGI R5 – if register 5 contains the value 24, then the data

would be found at address 24

• Number of bits needed? Same as register addressing

• Operand memory accesses: one per operand access

• When would this be useful?
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• Relative displacement addressing: used for jumps (branches)

relative to program counter

• Base register displacement addressing: have a base register to

which all addresses are added
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• Which operations to support

◦ Memory-mapped I/O or special instructions?

◦ How many instructions to support? RISC or CISC?

• Format of instructions:

◦ Size of instruction: part of word, word, multiple words?

◦ All instructions same size or not?

◦ Fields within instruction?

◦ All instructions with same format or not?

◦ Address modes?

◦ Number of registers?

◦ Addressing granularity?
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Transistors, etc.

Gates

Functional units

CPU’s API

 Symbolic API

Problem-Oriented
Language Level

Assembly Language
Level

Conventional
Machine Level

Microprogramming
Level

Digital Logic
Level

Device Level

High-level language:
e.g., C, C++, Java, Lisp,

Ada, FORTRAN, ...
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