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Homework, etc.

� Reading

– Chapter 14
– Appendix A is there as well

� Homework: Exercises at end of Chapter 14, due 10/17 (later than usual)
� Prelim I: Friday, 10/12

– Detailed questions (e.g., problems) on material up through RAID
– Conceptual questions on all material up to & including today’s material
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CPU 3 / 31

Central Processing Unit

� Part of the computer that carries out the instructions of programs
� Controls the other two parts (memory, I/O).
� This class:

– CPU organization
– Machine (and assembly) language introduction
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Components of the CPU

Arithmetic and logic unit (ALU): where actual computation takes place
Control unit (CU): controls moving information around in CPU, placing data in registers, getting new
instructions from memory, ALU function, etc.
Registers: memory for CPU operation
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Registers

� Registers virtually all CPUs have:

– program (or instruction) counter
– program status word (PSW)
– instruction register
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Design Issues for Registers

� User accessible or protected?

– Want to protect the machine, other users from the user
– PSW – probably protected
– Instruction counter: generally protected, but some special instructions for changing (e.g., branch,

subroutine instructions)
– Data registers: user accessible (via instructions)
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Design Issues for Registers

� General-purpose or special-purpose?

– General-purpose ⇒ flexibility
– Special-purpose ⇒ reduce number of operands or operand size
– Mixed: some special-purpose registers that are used as general-purpose registers by some

instructions
– Different size registers for different purposes

� Size?

– Need to hold largest operand required
– Sometimes use multiple registers for single operand

� Who saves them when needed (on interrupt) – software or hardware?
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Assembly Language 8 / 31

Machine Language

� Instruction set: instructions CPU can carry out
� Each: Op code & ≥ 0 operands

� Operands include addresses and data.
� Op codes, operands: binary numbers—of course.
� Instuctions are the machine language

� Difficult for humans to use!
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Assembly Language

� Symbolic version of machine language.
� Op codes represented by mnemonics – e.g.,

– Machine language: addition op code might be 001001

– Assembly language: might represent as ADD
– Operands can be symbolic: names for constants, memory locations
– Assembler translates assembly language program → machine language
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Instruction Execution

� Fetch instruction from memory
� Decode instruction
� Fetch operands (if any)
� Carry out instruction
� Store results (if any)

Copyright c© 2002–2018 UMaine Computer Science Department – 10 / 31

Instruction Format

� Specification of action to be done: op code
� Addresses of any operands
� Address of any result to be stored
� E.g., add register 0 to register 1

– Assembly lang: ADD R0,R1

– Instruction: 01000 | 000 | 0000 | 00 | 01
– 5 bit op code, 3 bits unused, 4 bits for mode (direct, direct), R0, R1
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Instruction Types 12 / 31

Types of Instructions

� Data transfer
� Arithmetic operations
� Logical operations
� Transfer of control
� System control
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Data Transfer Instructions

� Move data from place to place
� Source, destination could be registers, memory
� Different addressing modes possible (see later)
� Size of transfer: on some machines, amount can be large
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Arithmetic Operations

� Almost all CPUs (i.e., their ALUs) provide ADD, SUB, MULT, and DIV

� Why include SUB – could use ADD and complement second op?
� Usually provide for signed integers, other types (e.g., floating point)
� Usually have to move the operand’s data to location where ALU expects it (e.g., a register)
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Logical operations

� Usually provide AND, OR, NOT, XOR, EQUAL, SHIFT, ROTATE, maybe arithmetic shift (sign bit
propagated)

� Why include all these, when you can do it all with NAND?
� What about complement? Can you do it with XOR? with NOT?
� How would you mask (clear) particular bits?
� How would you set particular bits?
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Transfer of control

� Branch (jump) instructions

– Unconditional and conditional
– Absolute or relative

� Subroutine call and return
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System control

� Protected operations – only executable by some processes (e.g., operating system)
� Use to access protected registers, protected memory, etc.
� Input/output instructions are usually protected
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Number of Instructions

� One philosophy: have relatively few, simple instructions

– Allows instructions to be optimized
– Requires less chip space (⇒ cheaper, or more other things can be put on chip)
– Components can be closer to each other (⇒ faster)
– Reduced instruction set computers (RISC)
– Examples: SPARC chips in Sun machines, PowerPC in older Macs
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Number of Instructions

� Other philosophy: have a large number of instructions, including special-purpose ones (e.g.,
multimedia, etc.)

– Makes it easier for programmers
– Requires less memory, less disk space for programs
– Complex instruction set computers (CISC)
– Examples: Intel family of processors
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Data Types

� Numbers:

– Integers (sign-magnitude, 2’s complement, packed decimal)
– Floating point
– Size: single, double, etc.

� Characters:

– Encoded as ASCII or Unicode characters these days
– Single byte (ASCII) or two or more bytes (Unicode) in length
– Strings of characters: length + string or null-terminated

� Logical data
� General bit strings: e.g., for multimedia, etc.
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Addressing Modes

� Different instructions have different addressing modes

� Determines where the data corresponding to the operands is
� E.g.: think of operand as name of data’s location
� Modes: immediate, direct, indirect, register, register indirect, displacement, others
� Issues:

– Which one should CPU use for instruction?

⊲ Sometimes indicated by op code
⊲ Sometimes indicated by mode bits that can be set

– How many bits are required for instruction?
– How many memory references are required to find effective address (where the data is actually

located)?
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Immediate Addressing

� Operand’s data is the operand itself: i.e., in instruction
� E.g., NEG #5 might mean “negate 5, leave result in register 0”
� How many bits needed?

– Generally: fixed-size field in the instruction for operand
– Generally limited to integers (2’s complement) or characters

� Operand memory accesses: none
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Direct Addressing

� Operand contains memory address of the data
� E.g.: NEG 8: negate the value of the data located at memory location 8
� Number of bits needed?

– Varies between computers, maybe between instructions
– With n bits devoted to address, can refer to 2

n addresses in memory
– Up to size of word
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Direct Addressing

� Operand memory accesses: one per operand
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Indirect Addressing

� Operand contains the address of the address of the data
� E.g.: NEGI 8: if address 8 contains 24, then the actual data that would be negated

would be what’s stored at memory location 24
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� Number of bits needed – same as for direct addressing

Copyright c© 2002–2018 UMaine Computer Science Department – 25 / 31

14



Indirect Addressing

� Operand memory accesses needed: two per operand
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Register Addressing

� Implicit ⇐ op code specifies which register is used
� Explicit ⇐ operand specifies which register
� E.g.: NEG R5 – negate the data contained in register 5
� Number of bits needed? Usually few, since number of registers limited.
� Operand memory accesses: none

– Only requires access to register, which is quick
– Only really efficient if register used over and over – otherwise, have to load the register, which

could be more inefficient than direct addressing

� RISC machines make heavy use of register addressing – e.g., PowerPC forces this for all arithmetic
operations
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Register Indirect Addressing

� Register contains address of the data
� E.g.: NEGI R5 – if register 5 contains the value 24, then the data would be found at address 24
� Number of bits needed? Same as register addressing
� Operand memory accesses: one per operand access
� When would this be useful?
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Other Addressing Modes

� Relative displacement addressing: used for jumps (branches) relative to program counter
� Base register displacement addressing: have a base register to which all addresses are added
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Instruction Set Design 30 / 31

Designing Instruction Sets

� Which operations to support

– Memory-mapped I/O or special instructions?
– How many instructions to support? RISC or CISC?

� Format of instructions:

– Size of instruction: part of word, word, multiple words?
– All instructions same size or not?
– Fields within instruction?
– All instructions with same format or not?
– Address modes?
– Number of registers?
– Addressing granularity?
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Abstraction hierarchy

Transistors, etc.

Gates

Functional units

CPU’s API

 Symbolic API

Problem-Oriented
Language Level

Assembly Language
Level

Conventional
Machine Level

Microprogramming
Level

Digital Logic
Level

Device Level

High-level language:
e.g., C, C++, Java, Lisp,

Ada, FORTRAN, ...
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