
COS 140: Foundations of Computer Science

CPU Organization and Assembly Language

Fall 2018

CPU 3

Components of the CPU . 4
Registers . 5
Register design issues. 6

Assembly Language 8

Machine Language . 8
Assembly Language . 9
Instruction Execution . 10
Instruction Format. 11

Instruction Types 12

Types of Instructions . 12
Data Transfer Instructions . 13
Arithmetic Operations . 14
Logical operations . 15
Transfer of control. 16
System control . 17
Number of Instructions . 18
Data Types . 20

Addressing Modes 21

Addressing Modes . 21
Immediate Addressing . 22
Direct Addressing . 23
Direct Addressing . 24
Indirect Addressing . 25
Indirect Addressing . 26
Register Addressing . 27
Register Indirect Addressing . 28
Other Addressing Modes . 29

Instruction Set Design 30

Abstraction 31

1

Abstraction hierarchy . 31

2

Homework, etc.

� Reading

– Chapter 14
– Appendix A is there as well

� Homework: Exercises at end of Chapter 14, due 10/17 (later than usual)
� Prelim I: Friday, 10/12

– Detailed questions (e.g., problems) on material up through RAID
– Conceptual questions on all material up to & including today’s material

Copyright c© 2002–2018 UMaine Computer Science Department – 2 / 31

CPU 3 / 31

Central Processing Unit

� Part of the computer that carries out the instructions of programs
� Controls the other two parts (memory, I/O).
� This class:

– CPU organization
– Machine (and assembly) language introduction

Copyright c© 2002–2018 UMaine Computer Science Department – 3 / 31

3

Components of the CPU

Arithmetic and logic unit (ALU): where actual computation takes place
Control unit (CU): controls moving information around in CPU, placing data in registers, getting new
instructions from memory, ALU function, etc.
Registers: memory for CPU operation

Copyright c© 2002–2018 UMaine Computer Science Department – 4 / 31

Registers

� Registers virtually all CPUs have:

– program (or instruction) counter
– program status word (PSW)
– instruction register

Copyright c© 2002–2018 UMaine Computer Science Department – 5 / 31

4

Design Issues for Registers

� User accessible or protected?

– Want to protect the machine, other users from the user
– PSW – probably protected
– Instruction counter: generally protected, but some special instructions for changing (e.g., branch,

subroutine instructions)
– Data registers: user accessible (via instructions)

Copyright c© 2002–2018 UMaine Computer Science Department – 6 / 31

Design Issues for Registers

� General-purpose or special-purpose?

– General-purpose ⇒ flexibility
– Special-purpose ⇒ reduce number of operands or operand size
– Mixed: some special-purpose registers that are used as general-purpose registers by some

instructions
– Different size registers for different purposes

� Size?

– Need to hold largest operand required
– Sometimes use multiple registers for single operand

� Who saves them when needed (on interrupt) – software or hardware?

Copyright c© 2002–2018 UMaine Computer Science Department – 7 / 31

5

Assembly Language 8 / 31

Machine Language

� Instruction set: instructions CPU can carry out
� Each: Op code & ≥ 0 operands

� Operands include addresses and data.
� Op codes, operands: binary numbers—of course.
� Instuctions are the machine language

� Difficult for humans to use!

Copyright c© 2002–2018 UMaine Computer Science Department – 8 / 31

Assembly Language

� Symbolic version of machine language.
� Op codes represented by mnemonics – e.g.,

– Machine language: addition op code might be 001001

– Assembly language: might represent as ADD
– Operands can be symbolic: names for constants, memory locations
– Assembler translates assembly language program → machine language

Copyright c© 2002–2018 UMaine Computer Science Department – 9 / 31

6

Instruction Execution

� Fetch instruction from memory
� Decode instruction
� Fetch operands (if any)
� Carry out instruction
� Store results (if any)

Copyright c© 2002–2018 UMaine Computer Science Department – 10 / 31

Instruction Format

� Specification of action to be done: op code
� Addresses of any operands
� Address of any result to be stored
� E.g., add register 0 to register 1

– Assembly lang: ADD R0,R1

– Instruction: 01000 | 000 | 0000 | 00 | 01
– 5 bit op code, 3 bits unused, 4 bits for mode (direct, direct), R0, R1

Copyright c© 2002–2018 UMaine Computer Science Department – 11 / 31

7

Instruction Types 12 / 31

Types of Instructions

� Data transfer
� Arithmetic operations
� Logical operations
� Transfer of control
� System control

Copyright c© 2002–2018 UMaine Computer Science Department – 12 / 31

Data Transfer Instructions

� Move data from place to place
� Source, destination could be registers, memory
� Different addressing modes possible (see later)
� Size of transfer: on some machines, amount can be large

Copyright c© 2002–2018 UMaine Computer Science Department – 13 / 31

8

Arithmetic Operations

� Almost all CPUs (i.e., their ALUs) provide ADD, SUB, MULT, and DIV

� Why include SUB – could use ADD and complement second op?
� Usually provide for signed integers, other types (e.g., floating point)
� Usually have to move the operand’s data to location where ALU expects it (e.g., a register)

Copyright c© 2002–2018 UMaine Computer Science Department – 14 / 31

Logical operations

� Usually provide AND, OR, NOT, XOR, EQUAL, SHIFT, ROTATE, maybe arithmetic shift (sign bit
propagated)

� Why include all these, when you can do it all with NAND?
� What about complement? Can you do it with XOR? with NOT?
� How would you mask (clear) particular bits?
� How would you set particular bits?

Copyright c© 2002–2018 UMaine Computer Science Department – 15 / 31

9

Transfer of control

� Branch (jump) instructions

– Unconditional and conditional
– Absolute or relative

� Subroutine call and return

Copyright c© 2002–2018 UMaine Computer Science Department – 16 / 31

System control

� Protected operations – only executable by some processes (e.g., operating system)
� Use to access protected registers, protected memory, etc.
� Input/output instructions are usually protected

Copyright c© 2002–2018 UMaine Computer Science Department – 17 / 31

10

Number of Instructions

� One philosophy: have relatively few, simple instructions

– Allows instructions to be optimized
– Requires less chip space (⇒ cheaper, or more other things can be put on chip)
– Components can be closer to each other (⇒ faster)
– Reduced instruction set computers (RISC)
– Examples: SPARC chips in Sun machines, PowerPC in older Macs

Copyright c© 2002–2018 UMaine Computer Science Department – 18 / 31

Number of Instructions

� Other philosophy: have a large number of instructions, including special-purpose ones (e.g.,
multimedia, etc.)

– Makes it easier for programmers
– Requires less memory, less disk space for programs
– Complex instruction set computers (CISC)
– Examples: Intel family of processors

Copyright c© 2002–2018 UMaine Computer Science Department – 19 / 31

11

Data Types

� Numbers:

– Integers (sign-magnitude, 2’s complement, packed decimal)
– Floating point
– Size: single, double, etc.

� Characters:

– Encoded as ASCII or Unicode characters these days
– Single byte (ASCII) or two or more bytes (Unicode) in length
– Strings of characters: length + string or null-terminated

� Logical data
� General bit strings: e.g., for multimedia, etc.

Copyright c© 2002–2018 UMaine Computer Science Department – 20 / 31

Addressing Modes 21 / 31

Addressing Modes

� Different instructions have different addressing modes

� Determines where the data corresponding to the operands is
� E.g.: think of operand as name of data’s location
� Modes: immediate, direct, indirect, register, register indirect, displacement, others
� Issues:

– Which one should CPU use for instruction?

⊲ Sometimes indicated by op code
⊲ Sometimes indicated by mode bits that can be set

– How many bits are required for instruction?
– How many memory references are required to find effective address (where the data is actually

located)?

Copyright c© 2002–2018 UMaine Computer Science Department – 21 / 31

12

Immediate Addressing

� Operand’s data is the operand itself: i.e., in instruction
� E.g., NEG #5 might mean “negate 5, leave result in register 0”
� How many bits needed?

– Generally: fixed-size field in the instruction for operand
– Generally limited to integers (2’s complement) or characters

� Operand memory accesses: none

Copyright c© 2002–2018 UMaine Computer Science Department – 22 / 31

Direct Addressing

� Operand contains memory address of the data
� E.g.: NEG 8: negate the value of the data located at memory location 8
� Number of bits needed?

– Varies between computers, maybe between instructions
– With n bits devoted to address, can refer to 2

n addresses in memory
– Up to size of word

Copyright c© 2002–2018 UMaine Computer Science Department – 23 / 31

13

Direct Addressing

� Operand memory accesses: one per operand

A
dd

re
ss

CPU

Mem

D
at

a

Busses

1

2

3

4

Copyright c© 2002–2018 UMaine Computer Science Department – 24 / 31

Indirect Addressing

� Operand contains the address of the address of the data
� E.g.: NEGI 8: if address 8 contains 24, then the actual data that would be negated

would be what’s stored at memory location 24

48
44
40
36
32
28
24
20
16
12
8
4
0

.

.

.

24

1010

� Number of bits needed – same as for direct addressing

Copyright c© 2002–2018 UMaine Computer Science Department – 25 / 31

14

Indirect Addressing

� Operand memory accesses needed: two per operand

A
dd

re
ss

CPU

Mem

D
at

a

Busses

1

2

3

4
5

6

7

8

Copyright c© 2002–2018 UMaine Computer Science Department – 26 / 31

Register Addressing

� Implicit ⇐ op code specifies which register is used
� Explicit ⇐ operand specifies which register
� E.g.: NEG R5 – negate the data contained in register 5
� Number of bits needed? Usually few, since number of registers limited.
� Operand memory accesses: none

– Only requires access to register, which is quick
– Only really efficient if register used over and over – otherwise, have to load the register, which

could be more inefficient than direct addressing

� RISC machines make heavy use of register addressing – e.g., PowerPC forces this for all arithmetic
operations

Copyright c© 2002–2018 UMaine Computer Science Department – 27 / 31

15

Register Indirect Addressing

� Register contains address of the data
� E.g.: NEGI R5 – if register 5 contains the value 24, then the data would be found at address 24
� Number of bits needed? Same as register addressing
� Operand memory accesses: one per operand access
� When would this be useful?

Copyright c© 2002–2018 UMaine Computer Science Department – 28 / 31

Other Addressing Modes

� Relative displacement addressing: used for jumps (branches) relative to program counter
� Base register displacement addressing: have a base register to which all addresses are added

Copyright c© 2002–2018 UMaine Computer Science Department – 29 / 31

16

Instruction Set Design 30 / 31

Designing Instruction Sets

� Which operations to support

– Memory-mapped I/O or special instructions?
– How many instructions to support? RISC or CISC?

� Format of instructions:

– Size of instruction: part of word, word, multiple words?
– All instructions same size or not?
– Fields within instruction?
– All instructions with same format or not?
– Address modes?
– Number of registers?
– Addressing granularity?

Copyright c© 2002–2018 UMaine Computer Science Department – 30 / 31

Abstraction 31 / 31

Abstraction hierarchy

Transistors, etc.

Gates

Functional units

CPU’s API

 Symbolic API

Problem-Oriented
Language Level

Assembly Language
Level

Conventional
Machine Level

Microprogramming
Level

Digital Logic
Level

Device Level

High-level language:
e.g., C, C++, Java, Lisp,

Ada, FORTRAN, ...

Copyright c© 2002–2018 UMaine Computer Science Department – 31 / 31

17

	Homework, etc.
	CPU
	Central Processing Unit
	Components of the CPU
	Registers
	Design Issues for Registers
	Design Issues for Registers

	Assembly Language
	Machine Language
	Assembly Language
	Instruction Execution
	Instruction Format

	Instruction Types
	Types of Instructions
	Data Transfer Instructions
	Arithmetic Operations
	Logical operations
	Transfer of control
	System control
	Number of Instructions
	Number of Instructions
	Data Types

	Addressing Modes
	Addressing Modes
	Immediate Addressing
	Direct Addressing
	Direct Addressing
	Indirect Addressing
	Indirect Addressing
	Register Addressing
	Register Indirect Addressing
	Other Addressing Modes

	Instruction Set Design
	Designing Instruction Sets

	Abstraction
	Abstraction hierarchy

