Homework

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Reading and homework:
 - Chapter 13
 - Homework due 10/15 (later than usual you're welcome!)
- Homework keys posted soon.
- Don't forget: Prelim I on 10/12!

COS 140: Foundations of Computer Science

Booth's Algorithm

Fall 2018

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

• We know how to do addition in the computer...

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

• We know how to do addition in the computer...

...but what about multiplication?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- We know how to do addition in the computer...
 - ...but what about multiplication?
 - For $n \times m$, could just add n to itself m times

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- We know how to do addition in the computer...
 - ...but what about multiplication?
 - For $n \times m$, could just add n to itself m times
- But can → lot of additions!

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- We know how to do addition in the computer...
 - ...but what about multiplication?
 - For $n \times m$, could just add n to itself m times
 - But can \longrightarrow lot of additions!

 $\texttt{E.g.:}\ 2,999,111\times 1,999,999,999$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- We know how to do addition in the computer...
 - ...but what about multiplication?
 - For $n \times m$, could just add n to itself m times
 - But can \longrightarrow lot of additions!
 - E.g.: 2, 999, 111×1 , 999, 999, 999
- Can we do better?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Booth's algorithm: algorithm for multiplication that:
 - \circ Uses mathematics insights $\Rightarrow\downarrow\downarrow$ # additions
 - Can be implemented in hardware

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Booth's algorithm: algorithm for multiplication that:
 - \circ Uses mathematics insights $\Rightarrow\downarrow\downarrow$ # additions
 - Can be implemented in hardware
- First: need to understand how to represent numbers in the computer

Numbers

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

 Here: focus only on integers – floating point numbers in later class/courses

Numbers

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Here: focus only on integers floating point numbers in later class/courses
- Many different ways have been tried
 - E.g., binary coded decimal (BCD)

 $1346 = 0001\ 0011\ 0100\ 0110$

Numbers

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Here: focus only on integers floating point numbers in later class/courses
- Many different ways have been tried
 - E.g., binary coded decimal (BCD)

 $1346 = 0001\ 0011\ 0100\ 0110$

- This class: look at most common:
 - Sign-magnitude representation
 - Two's complement representation

Sign-Magnitude Representation of Numbers

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

omputer Science

- Two parts to represent number n:
 - *Sign bit*:
 - leftmost (high-order) bit
 - 1 = negative, 0 = positive
 - Magnitude:
 - Remaining bits

•
$$= |n|$$

Problem

Number Representation

Sign-Magnitude Representation

• Overview

- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement

Representation

Basis of Booth's Algorithm

Booth's Algorithm

Represent 12 in 8-bit sign-magnitude representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

Represent 12 in 8-bit sign-magnitude representation:

12 in binary is 1100

- The sign of 12 is positive, so represented as 0.
- Representation of 12: 0000 1100

Problem

Number Representation

Sign-Magnitude Representation

• Overview

- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement

Representation

Basis of Booth's Algorithm

Booth's Algorithm

Represent -12 in 8-bit sign-magnitude representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

Represent -12 in 8-bit sign-magnitude representation:

- 12 in binary is 1100 (0000 1100 in 8 bits)
- The sign of -12 is negative, so represented as 1.
- Representation of -12: 1000 1100

Number of Bits in Representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement

Representation

Basis of Booth's Algorithm

- Each computer/OS/language: several integer representations
- Differ by length (# of bits)
- Need to know how to change size of representation

Changing size of representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

Smaller $s \rightarrow$ larger l:

- Sign bit of l = sign bit of s
- \circ Magnitude of l = magnitude of s
- Will need to *pad* with 0s to left
- $\circ~$ E.g., extend $1001~1010_2~(-26_{10})$ to 16 bits:

Changing size of representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

Smaller $s \rightarrow$ larger l:

- Sign bit of l = sign bit of s
- \circ Magnitude of l = magnitude of s
- Will need to *pad* with 0s to left
- \circ E.g., extend $1001\;1010_2\;(-26_{10})$ to 16 bits: $1000\;0000\;0001\;1010$

Changing size of representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

Smaller $s \rightarrow$ larger l:

- Sign bit of l = sign bit of s
- Magnitude of l = magnitude of s
- Will need to *pad* with 0s to left
- \circ E.g., extend $1001\;1010_2\;(-26_{10})$ to 16 bits: $1000\;0000\;0001\;1010$
- Larger $l \rightarrow \text{smaller } s$:
 - Same idea
 - Will have to truncate bits on left
 - What if number too large?

Problems with Sign Magnitude Representation

Problem

Number Representation

Sign-Magnitude Representation

- Overview
- Example
- Examples
- # bits
- Changing size
- Problems

Two's Complement Representation

Basis of Booth's Algorithm

- Two ways to represent 0!
 - Operations need to take sign bit into account
- Need *both* addition and subtraction logic

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• Positive numbers: same as sign-magnitude representation

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

omputer Science

- Positive numbers: same as sign-magnitude representation
- Negative numbers: use the number's *two's complement*

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since $n + n' = 0 \Rightarrow n' = -n$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since
$$n + n' = 0 \Rightarrow n' = -n$$

• Analogy – an *odometer*

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since
$$n + n' = 0 \Rightarrow n' = -n$$

• Analogy – an *odometer*:

99999 + 000001 = 000000

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since
$$n + n' = 0 \Rightarrow n' = -n$$

• Analogy – an *odometer*:

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since
$$n + n' = 0 \Rightarrow n' = -n$$

• Analogy – an *odometer*:

999999 +	000001	=	000000
999998 +	000002	=	000000

• So for 6 digits: 999999 represents -1, 999998 is -2, etc.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since
$$n + n' = 0 \Rightarrow n' = -n$$

• Analogy – an *odometer*:

• So for 6 digits: 999999 represents -1, 999998 is -2, etc. • For binary:

Computer Science Foundations

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

Positive numbers: same as sign-magnitude representation
Negative numbers: use the number's *two's complement*

The 2's complement of an b-bit binary number n is the number n' such that the b-bit sum s = n + n' = 0.

• Since
$$n + n' = 0 \Rightarrow n' = -n$$

• Analogy – an *odometer*:

So for 6 digits: 999999 represents -1, 999998 is -2, etc.
For binary:

$$111111 + 00001 = 00000$$
$$111110 + 000010 = 000000$$

Finding 2's complement

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

Finding 2's complement

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

• n + n' = (1)0000

Finding 2's complement

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

$$\circ \quad n+n' = (1)0000$$

$$\circ \quad \Rightarrow n' = (1)0000 - n$$
Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- $\circ~$ E.g., 10's complement of 0004=10000-4=9996

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

• Computing

- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- E.g., 10's complement of 0004 = 10000 4 = 9996
- \circ E.g., 2's complement of $0010_2 = 10000 10 = 1110$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- E.g., 10's complement of 0004 = 10000 4 = 9996
- \circ E.g., 2's complement of $0010_2 = 10000 10 = 1110$
- Want a more efficient way

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- E.g., 10's complement of 0004 = 10000 4 = 9996
- \circ E.g., 2's complement of $0010_2 = 10000 10 = 1110$
- Want a more efficient way
- For 4-digit 10's complement:

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

• Examples

- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- E.g., 10's complement of 0004 = 10000 4 = 9996
- \circ E.g., 2's complement of $0010_2 = 10000 10 = 1110$
- Want a more efficient way
- For 4-digit 10's complement:
 - \circ What number can I add to n to get 9999?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

• Examples

- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- E.g., 10's complement of 0004 = 10000 4 = 9996
- E.g., 2's complement of $0010_2 = 10000 10 = 1110$
- Want a more efficient way
- For 4-digit 10's complement:
 - \circ What number can I add to n to get 9999?
 - Find that, add 1, should be the 10's complement

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

• Examples

• Zero?

• Extending size

Addition

Subtraction

Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

• n + n' = (1)0000

$$\circ \quad \Rightarrow n' = (1)0000 - n$$

• E.g., 10's complement of 0004 = 10000 - 4 = 9996

• E.g., 2's complement of $0010_2 = 10000 - 10 = 1110$

• Want a more efficient way

- For 4-digit 10's complement:
 - \circ What number can I add to n to get 9999?
 - Find that, add 1, should be the 10's complement
 - E.g., 10's complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

• Examples

- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

- n + n' = (1)0000
- $\circ \quad \Rightarrow n' = (1)0000 n$
- E.g., 10's complement of 0004 = 10000 4 = 9996
- E.g., 2's complement of $0010_2 = 10000 10 = 1110$
- Want a more efficient way
- For 4-digit 10's complement:
 - \circ What number can I add to n to get 9999?
 - Find that, add 1, should be the 10's complement
 - E.g., 10's complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

• Does this work?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

• Examples

• Zero?

• Extending size

Addition

Subtraction

Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

• n + n' = (1)0000

 $\circ \quad \Rightarrow n' = (1)0000 - n$

• E.g., 10's complement of 0004 = 10000 - 4 = 9996

• E.g., 2's complement of $0010_2 = 10000 - 10 = 1110$

• Want a more efficient way

• For 4-digit 10's complement:

 \circ What number can I add to n to get 9999?

• Find that, add 1, should be the 10's complement

• E.g., 10's complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

• Does this work? Yes: 0235 + 9765 = 10000 which is a 4-digit 0.

omputer

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

Computing

• Examples

• Zero?

• Extending size

Addition

Subtraction

Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

• One way (e.g., 4-digit numbers):

• n + n' = (1)0000

 $\circ \quad \Rightarrow n' = (1)0000 - n$

• E.g., 10's complement of 0004 = 10000 - 4 = 9996

• E.g., 2's complement of $0010_2 = 10000 - 10 = 1110$

• Want a more efficient way

• For 4-digit 10's complement:

 \circ What number can I add to n to get 9999?

• Find that, add 1, should be the 10's complement

• E.g., 10's complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

- Does this work? Yes: 0235 + 9765 = 10000 which is a 4-digit 0.
- Will it work for binary? And can we do it efficiently?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• Problem: How to *efficiently* find the 2's complement?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

omputer Science oundations

- Problem: How to *efficiently* find the 2's complement?
- Example: find 8-bit 2's complement of 1000 1100

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
 - Example: find 8-bit 2's complement of $1000\,1100$
 - $\circ~$ First find number I can add to give $1111\,1111$, then add 1

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
- Example: find 8-bit 2's complement of 1000 1100
 - First find number I can add to give 111111111, then add 1 • 10001100 + 01110011 = 11111111, so...

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Overview

- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
- Example: find 8-bit 2's complement of 1000 1100
 - \circ First find number I can add to give $1111\,1111$, then add 1
 - \circ 1000 1100 + 0111 0011 = 1111 1111, so...
 - $\circ \ ...0111\,0011 + 1 = 0111\,0100 =$ 2's complement of $1000\,1100$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
 - Example: find 8-bit 2's complement of $1000\,1100$
 - $\circ~$ First find number I can add to give $1111\,1111$, then add 1
 - \circ 1000 1100 + 0111 0011 = 1111 1111, so...
 - $\circ \ ...0111\,0011 + 1 = 0111\,0100 =$ 2's complement of $1000\,1100$
- In example, 01110011 is the *1's complement* of 10001100
- Easy (efficient) to find: *bitwise negation* of number

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
 - Example: find 8-bit 2's complement of $1000\,1100$
 - $\circ~$ First find number I can add to give $1111\,1111$, then add 1
 - \circ 1000 1100 + 0111 0011 = 1111 1111, so...
 - ...01110011 + 1 = 01110100 = 2's complement of 10001100
- In example, 01110011 is the *1's complement* of 10001100
- Easy (efficient) to find: *bitwise negation* of number
- So to find 2's complement of *n*:
 - 1. Do bitwise negation of n.
 - 2. Add 1.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
 - Example: find 8-bit 2's complement of $1000\,1100$
 - $\circ~$ First find number I can add to give $1111\,1111$, then add 1
 - \circ 1000 1100 + 0111 0011 = 1111 1111, so...
 - ...01110011 + 1 = 01110100 = 2's complement of 10001100
- In example, 0111 0011 is the *1's complement* of 1000 1100
- Easy (efficient) to find: *bitwise negation* of number
- So to find 2's complement of *n*:
 - 1. Do bitwise negation of n.
 - 2. Add 1.
- Both are easy for hardware or software

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: How to *efficiently* find the 2's complement?
 - Example: find 8-bit 2's complement of $1000\,1100$
 - $\circ~$ First find number I can add to give $1111\,1111$, then add 1
 - \circ 1000 1100 + 0111 0011 = 1111 1111, so...
 - ...01110011 + 1 = 01110100 = 2's complement of 10001100
- In example, 01110011 is the *1's complement* of 10001100
- Easy (efficient) to find: *bitwise negation* of number
- So to find 2's complement of *n*:
 - 1. Do bitwise negation of n.
 - 2. Add 1.
- Both are easy for hardware or software
- Note that leftmost bit still denotes sign

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - \circ Convert to binary: $0010\,0101$
 - \circ It's positive \Rightarrow done.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - \circ Convert to binary: $0010\,0101$
 - It's positive \Rightarrow done.
- Problem: Represent -37 in 8-bit 2's complement form
 - Negative \Rightarrow find 8-bit 2's complement of 37
 - \circ Convert 37 to binary: $0010\,0101$
 - \circ Find 1's complement: $1101\,1010$
 - Add 1: 11011010 + 1 = 11011011

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - \circ Convert to binary: $0010\,0101$
 - It's positive \Rightarrow done.
- Problem: Represent -37 in 8-bit 2's complement form
 - Negative \Rightarrow find 8-bit 2's complement of 37
 - \circ Convert 37 to binary: $0010\,0101$
 - \circ Find 1's complement: 11011010
 - Add 1: 11011010 + 1 = 11011011
- Is this correct?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer ience oundations

Basis of Booth's Algorithm

Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - Convert to binary: 00100101Ο
 - It's positive \Rightarrow done. Ο
- Problem: Represent -37 in 8-bit 2's complement form
 - Negative \Rightarrow find 8-bit 2's complement of 37 Ο
 - Convert 37 to binary: 0010 0101 Ο
 - Find 1's complement: 110110100
 - Add 1: 11011010 + 1 = 11011011Ο
- Is this correct?

If $1101\ 1011$ is -n, then $n = -(-n) = -(1101\ 1011)$ 0

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - \circ Convert to binary: $0010\,0101$
 - It's positive \Rightarrow done.
- Problem: Represent -37 in 8-bit 2's complement form
 - Negative \Rightarrow find 8-bit 2's complement of 37
 - \circ Convert 37 to binary: $0010\,0101$
 - \circ Find 1's complement: $1101\,1010$
 - Add 1: 11011010 + 1 = 11011011
- Is this correct?
 - If $1101\ 1011$ is -n, then $n = -(-n) = -(1101\ 1011)$
 - \circ $\,$ So find 2's complement of $1101\,1011$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - \circ Convert to binary: $0010\,0101$
 - It's positive \Rightarrow done.
- Problem: Represent -37 in 8-bit 2's complement form
 - Negative \Rightarrow find 8-bit 2's complement of 37
 - \circ Convert 37 to binary: $0010\,0101$
 - \circ Find 1's complement: $1101\,1010$
 - Add 1: 11011010 + 1 = 11011011
- Is this correct?
 - If $1101\ 1011$ is -n, then $n = -(-n) = -(1101\ 1011)$
 - \circ $\,$ So find 2's complement of $1101\,1011$
 - \circ 2's complement = $00100100 + 1 = 00100101 = 37_{10}$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

- Problem: Represent 37 in 8-bit 2's complement form
 - \circ Convert to binary: $0010\,0101$
 - It's positive \Rightarrow done.
- Problem: Represent -37 in 8-bit 2's complement form
 - Negative \Rightarrow find 8-bit 2's complement of 37
 - \circ Convert 37 to binary: $0010\,0101$
 - \circ Find 1's complement: $1101\,1010$
 - Add 1: 11011010 + 1 = 11011011
- Is this correct?
 - If $1101\ 1011$ is -n, then $n = -(-n) = -(1101\ 1011)$
 - \circ $\,$ So find 2's complement of $1101\,1011$
 - \circ 2's complement = $00100100 + 1 = 00100101 = 37_{10}$
 - \circ So $1101\,1011$ represents -37_{10} .

What about 0?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Let's look at 8-bit 2's complement 0:
 - \circ 1's complement: 11111111
 - \circ 8-bit 2's complement: 11111111 + 00000001 = 000000000
 - ... only one representation for 0.

Extending Two's Complement to More Bits

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- Pad highest order bits with the sign bit.
 - $\circ~$ Extend our representation of 12 to 16 bits:

 $0000\ 1100 \Rightarrow 0000\ 0000\ 0000\ 1100$

• Extend our representation of -12 to 16 bits:

$1111\ 0100 \Rightarrow 1111\ 1111\ 1111\ 0100$

Extending Two's Complement to More Bits

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

- Pad highest order bits with the sign bit.
 - $\circ~$ Extend our representation of 12 to 16 bits:

 $0000\ 1100 \Rightarrow 0000\ 0000\ 0000\ 1100$

• Extend our representation of -12 to 16 bits:

$1111\ 0100 \Rightarrow 1111\ 1111\ 1111\ 0100$

Check it: $0000\ 0000\ 0000\ 1011 - \text{one's complement}$ $0000\ 0000\ 0000\ 1100 = 12$

• When create initial representation, make sure have enough bits to have correct sign bit.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• Simple: just add the two number, whether they're positive *or* negative!

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- Simple: just add the two number, whether they're positive *or* negative!
- E.g., two positive numbers, 4-bit representation: 4 + 3

 $0100 \\ +0011 \\ (0) 0111$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• Simple: just add the two number, whether they're positive *or* negative!

(0) 0111

- E.g., two positive numbers, 4-bit representation: 4 + 3 0100 + 0011
 - E.g., positive and negative, 4-bit representation: 4 + -3 0100 +1101(1) 0001

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

 Simple: just add the two number, whether they're positive or negative!

(0) 0111

- E.g., two positive numbers, 4-bit representation: 4 + 3 0100 + 0011
- E.g., positive and negative, 4-bit representation: 4 + -3 0100 +1101 (1) 0001
- E.g., Two negative numbers, 4-bit representation: -4 + -3 $\frac{1100}{(1)\ 1001}$

Two's complement subtraction

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

• Simple: just negate the *subtrahend* and add to the *minuend*

Two's complement subtraction

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

omputer Science Foundations

- Simple: just negate the *subtrahend* and add to the *minuend*
- E.g., what is 4-3 in 4-bit 2's complement arithmetic?

Two's complement subtraction

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- Simple: just negate the *subtrahend* and add to the *minuend*
- E.g., what is 4-3 in 4-bit 2's complement arithmetic? 0100

(1) 0001

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- Computer Science Foundations

- *Overflow:* when result of computation can't be stored in representation
- E.g., 255 + 255 in 8-bit representation
- How to detect in 2's complement?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

- *Overflow:* when result of computation can't be stored in representation
- E.g., 255 + 255 in 8-bit representation
- How to detect in 2's complement?
- If differ in sign: no overflow possible

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

Basis of Booth's Algorithm

Booth's Algorithm

- *Overflow:* when result of computation can't be stored in representation
- E.g., 255 + 255 in 8-bit representation
- How to detect in 2's complement?
- If differ in sign: no overflow possible
- If both positive:
 - \circ Overflow will \rightarrow negative result
 - E.g., 4-bit 2's complement: 7 + 7
 - $0111 \\ +0111 \\ (0) 1110$

Computer Science Foundations

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

- Overview
- Computing
- Examples
- Zero?
- Extending size
- Addition
- Subtraction
- Overflow

omputer Science

Basis of Booth's Algorithm

Booth's Algorithm

- *Overflow:* when result of computation can't be stored in representation
- E.g., 255 + 255 in 8-bit representation
- How to detect in 2's complement?
- If differ in sign: no overflow possible
- If both positive:
 - \circ Overflow will \rightarrow negative result
 - E.g., 4-bit 2's complement: 7 + 7
 - $0111 \\ +0111 \\ 0) 1110$

- If both negative:
 - \circ $\,$ Overflow will \rightarrow postive result
 - E.g., 4-bit 2's complement: -7 + -7

 $\begin{array}{r}
 1001 \\
 \pm1001 \\
 \hline
 (1) 0010
 \end{array}$

Long-hand Multiplication

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight
- Why Does This Work?
- Example

omputer Science

• Multiplication using the insight

Booth's Algorithm

From elementary school...

- For each digit in the multiplier:
 - Start creating partial product in the proper column.
 - Multiply each digit in the multiplicand to form a partial product.
 - Add all the partial products together (with each being in its proper columns).
- Intuition for multiplication of unsigned numbers. Sped up by fact that can only use 1's (add the multiplicand and shift to next column) and 0's (shift to next column).
- We would like to not do so many additions!

Insight Behind Booth's Algorithm

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight
- Why Does This Work?
- Example

omputer

undations

• Multiplication using the insight

Booth's Algorithm

• A block of k 1's in a number is equal to $2^n + 2^{n-1} \dots + 2^{n-k+1}$

where n is determined by where the block appears.

E.g., 0001 1000₂(=
$$24_{10}$$
); $n = 4, k = 2$:

 $0001\ 1000_2 = 2^4 + 2^3 = 2^4 + 2^{4-2+1} = 2^n + 2^{n-k+1}$

- Insight: The same block of 1's is also equal to: $2^{n+1} 2^{n-k+1}$
 - E.g., 0001 1000₂: 0001 1000₂ = $2^5 - 2^3 = 32 - 8 = 24$
- To find value of a number, simply perform this operation when going in or out of blocks of 1's saves additions

Why Does This Work?

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight

• Why Does This Work?

- Example
- Multiplication using the insight

Booth's Algorithm

If you think about it, adding 2^{n-k+1} to the number is the same as adding a number with only a 1 in that position, which is guaranteed to give a new number with a 1 in 2^{n+1} and 0's where the 1's were:

011100
+000100
100000

- Let the first number be x, with k = 3 1s and n = 4
- The second number is 2^{n-k+1}
- The sum is 2^{n+1}
- So: $x + 2^{n-k+1} = 2^{n+1}$
- So: $x = 2^{n+1} 2^{n-k+1}$

Example of Insight

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight
- Why Does This Work?
- Example
- Multiplication using the insight

Booth's Algorithm

Convert 11011110 to decimal.

• Standard way

$$\circ 2^{7} + 2^{6} + 2^{4} + 2^{3} + 2^{2} + 2^{1} \\ \circ 128 + 64 + 16 + 8 + 4 + 2 \\ \circ 222$$

• Using the insight:

$$\begin{array}{l} \circ \quad (2^8 - 2^6) + (2^5 - 2^1) \\ \circ \quad (256 - 64) + (32 - 2) \end{array}$$

$$\circ$$
 192 + 30

• 222

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight

• Why Does This Work?

• Example

• Multiplication using the insight

Booth's Algorithm

• Suppose we have a number such as 0110_2 we wish to multiply by another number, say 0010_2

Copyright © 2002–2018 UMaine School of Computing and Information Science – 25 / 32

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight

• Why Does This Work?

• Example

• Multiplication using the insight

- Suppose we have a number such as 0110_2 we wish to multiply by another number, say 0010_2
 - We know that:

$$0110_2 = 2^3 - 2^1$$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight
- Why Does This Work?
- Example

• Multiplication using the insight

Booth's Algorithm

• Suppose we have a number such as 0110_2 we wish to multiply by another number, say 0010_2

We know that:

$$0110_2 = 2^3 - 2^1$$

• So, multiplying both sides by 0010_2 gives:

 $0110_2 \times 0010_2 = (2^3 - 2^1) \times 0010_2$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight

• Why Does This Work?

• Example

• Multiplication using the insight

Booth's Algorithm

• Suppose we have a number such as 0110_2 we wish to multiply by another number, say 0010_2

We know that:

$$0110_2 = 2^3 - 2^1$$

• So, multiplying both sides by 0010_2 gives:

 $0110_2 \times 0010_2 = (2^3 - 2^1) \times 0010_2$

• Which can be rewritten as: $2^3 imes 0010_2 - 2^1 imes 0010_2$

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Multiplication
- Booth's insight
- Why Does This Work?
- Example

omputer Science Coundations

• Multiplication using the insight

Booth's Algorithm

- Suppose we have a number such as 0110_2 we wish to multiply by another number, say 0010_2
 - We know that:

$$0110_2 = 2^3 - 2^1$$

• So, multiplying both sides by 0010_2 gives:

 $0110_2 \times 0010_2 = (2^3 - 2^1) \times 0010_2$

- Which can be rewritten as: $2^3 \times 0010_2 2^1 \times 0010_2$
- This can save additions (subtractions):
 - Old way of multiplication: addition for each 1 in multiplier
 - This way: need 1 subtraction for each *group* of 1s, addition for the partial sums (differences)
 - Also need way to multiply by powers of two: just *shifting*

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Science Booth's algorithm is just the implementation of this insight, with some clever optimizations

• Requires:

- way to keep track of which bit we're on
- way to keep track of beginning, end of sequence of 1's
- way to form 2's complement
- way to *shift* over multiplicand for adding
- way to add
- holder for product

Registers Used by Booth's Algorithm

	Problem	Assuming <i>n</i> -bit numbers:		
	Number Representation	Register	<u>Size</u>	Description
	Sign-Magnitude Representation	Q	n	Initially holds multiplier, ultimately holds low-
	Two's Complement			order n bits of product
	Representation	Q-1	1	Holds previous low-order bit of Q – lets us
-	Algorithm			tell if block of 1's has started/stopped
	Booth's Algorithm	Μ	n	Multiplicand
	OverviewRegisters used	Α	n	Holds high-order portion of result
	Operations used	Count	_	Holds the number of bits in the multipli-
	 Overview of algorithm The algorithm 			cand/multiplier

• Examples

omputer Science Coundations

Operations Used by Booth's Algorithm

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Cience **Arithmetic Shift:** a fast machine operation which moves all bits over one position and repeats the sign bit (most significant bit) in the newly open position.

Compare: a fast machine instruction that checks to see if two bytes or words are the same

Add: a fast machine instruction that adds two numbers together
 Complement: a fast machine instruction that gives the complement of all bits (some machines may have a machine instruction for two's complement)

Booth's Algorithm Overview

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Science

- Will start with low-order bits of product in A (0s), multiplier in Q
 For each digit seen, regardless of what it is or what was seen before, shift once it has been handled.
 - This is equivalant to moving partial products over in long multiplication.
 - Instead of shifting multiplicand left before adding, we'll shift product (and multiplier) right – product shifts into Q over time, multiplier shifts out.
- When enter a group of 1's from the right, subtract the multiplicand from the accumulating product.
- When leave a group of 1's from the right, add the multiplicand to the accumulating product.
- The last two steps apply the basic insight, multiplied by the multiplicand.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
 - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Science

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
 - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
 - (c) Otherwise, do nothing.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Science

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
 - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
 - (c) Otherwise, do nothing.
- 3. Prepare for next bit.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
 - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
 - (c) Otherwise, do nothing.
- 3. Prepare for next bit.
 - (a) Arithmetic shift right A, Q, Q-1. (Shift along these registers as though they were one continuous register.)

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Science

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
 - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
 - (c) Otherwise, do nothing.
- 3. Prepare for next bit.
 - (a) Arithmetic shift right A, Q, Q-1. (Shift along these registers as though they were one continuous register.)
 - (b) Reduce the count by 1.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

- 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.
- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
 - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
 - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
 - (c) Otherwise, do nothing.
- 3. Prepare for next bit.
 - (a) Arithmetic shift right A, Q, Q-1. (Shift along these registers as though they were one continuous register.)
 - (b) Reduce the count by 1.
 - (c) If count is 0 end. Result is in AQ. Otherwise, go to step 2.

2 times 7, using 4 bit numbers.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand (M) is 0010.

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand (M) is 0010. Two's complement of multiplicand: 1110.

A Q Q-1 C

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Α	Q	Q-1	С	
0000	0111	0	4	Initialize; 1-0

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Α	Q	Q-1	С	
0000 +1110	0111	0	4	Initialize; 1-0 Subtract M from A (add -2)

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Α	Q	Q-1	С	
0000	0111	0	4	Initialize; 1-0
+1110				Subtract M from A (add -2)
1110	0111	0	4	

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Α	Q	Q-1	С	
0000	0111	0	4	Initialize; 1-0
+1110				Subtract M from A (add -2)
1110	0111	0	4	Now shift

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Α	Q	Q-1	С	
0000	0111	0	4	Initialize; 1-0
+1110				Subtract M from A (add -2)
1110	0111	0	4	Now shift
1111	0011	1	3	

Problem

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

Α	Q	Q-1	С	
0000	0111	0	4	Initialize; 1-0
+1110				Subtract M from A (add -2)
1110	0111	0	4	Now shift
1111	0011	1	3	Now shift

Problem

Number Representation

Sign-Magnitude Representation

A	Q	Q-1	С	
0000	0111	0	4	Initialize; 1-0
+1110				Subtract M from A (add -2)
1110	0111	0	4	Now shift
1111	0011	1	3	Now shift
1111	1001	1	2	

Problem

Number Representation

Sign-Magnitude
Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

	Α	Q	Q-1	С	
	0000	0111	0	4	Initialize; 1-0
	+1110				Subtract M from A (add -2)
	1110	0111	0	4	Now shift
—	1111	0011	1	3	Now shift
	1111	1001	1	2	Now shift

Problem2 times 7,Number Representation(M) is 001Sign-Magnitude
RepresentationATwo's Complement
Representation0000H1101110Basis of Booth's
Algorithm1110Booth's Algorithm1111Overview1111Operations used0Overview of algorithm1111

• The algorithm

• Examples

	A	Q	Q-1	С	
nt	0000	0111	0	4	Initialize; 1-0
	+1110				Subtract M from A (add -2)
	1110	0111	0	4	Now shift
	1111	0011	1	3	Now shift
<u>ו</u>	1111	1001	1	2	Now shift
	1111	1100	1	1	

ProblemNumber RepresentationSign-Magnitude
RepresentationTwo's Complement
RepresentationBasis of Booth's
AlgorithmBooth's AlgorithmOverviewRegisters usedOperations used

• Overview of algorithm

• The algorithm

• Examples

	A	Q	Q-1	С	
nt	0000	0111	0	4	Initialize; 1-0
	+1110				Subtract M from A (add -2)
	1110	0111	0	4	Now shift
	1111	0011	1	3	Now shift
	1111	1001	1	2	Now shift
	1111	1100	1	1	0-1

Problem	2 times 7	, using 4	4 bit nu
Number Representation	(M) is 00	10. Two ³	's comp
Sign-Magnitude Representation	A	Q	Q-1
Two's Complement	0000	0111	0
Representation	+1110		
Basis of Booth's	1110	0111	0
Algorithm	1111	0011	1
Booth's Algorithm	1111	1001	1
Overview Begisters used	1111	1100	1
 Operations used 	+0010		
 Overview of algorithm 			

• The algorithm

• Examples

mbers. Multiplier (Q) is 0111. Multiplicand plement of multiplicand: 1110.

A	Q	Q-1	С	
 0000	0111	0	4	Initialize; 1-0
 +1110				Subtract M from A (add -2)
1110	0111	0	4	Now shift
 1111	0011	1	3	Now shift
 1111	1001	1	2	Now shift
1111	1100	1	1	0-1
+0010				Add M to A (add 2)

Problem	2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand								
Number Representation	(M) is 0010. Two's complement of multiplicand: 1110.								
Sign-Magnitude Representation	A	Q	Q-1	С					
Two's Complement	0000	0111	0	4	Initialize; 1-0				
Representation	+1110				Subtract M from A (add -2)				
Basis of Booth's	1110	0111	0	4	Now shift				
Algorithm	1111	0011	1	3	Now shift				
Booth's Algorithm	1111	1001	1	2	Now shift				
Overview	1111	1100	1	1	0-1				
Registers usedOperations used	+0010	1100			Add M to A (add 2)				
Overview of algorithm	0001	1100	1	1					
 The algorithm 									

• Examples

omputer Science Coundations

Problem	2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand									
Number Representation	(M) is 0010. Two's complement of multiplicand: 1110.									
Sign-Magnitude Representation	A	Q	Q-1	С						
Two's Complement	0000	0111	0	4	Initialize; 1-0					
Representation	+1110				Subtract M from A (add -2)					
Basis of Booth's	1110	0111	0	4	Now shift					
Algorithm	1111	0011	1	3	Now shift					
Booth's Algorithm	1111	1001	1	2	Now shift					
Overview	1111	1100	1	1	0-1					
Registers usedOperations used	+0010				Add M to A (add 2)					
Overview of algorithm	0001	1100	1	1	Now shift					
 The algorithm 					I					

• Examples

Problem	2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand								
Number Representation	(M) is 0010. Two's complement of multiplicand: 1110.								
Sign-Magnitude Representation	A	Q	Q-1	С					
Two's Complement	0000	0111	0	4	Initialize; 1-0				
Representation	+1110				Subtract M from A (add -2)				
Basis of Booth's	1110	0111	0	4	Now shift				
Algorithm	1111	0011	1	3	Now shift				
Booth's Algorithm	1111	1001	1	2	Now shift				
Overview	1111	1100	1	1	0-1				
Registers usedOperations used	+0010				Add M to A (add 2)				
 Overview of algorithm 	0001	1100	1	1	Now shift				
 The algorithm 	0000	1110	0	0					
 Examples 									

Problem	2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand								
Number Representation	(M) is 0010. Two's complement of multiplicand: 1110.								
Sign-Magnitude Representation	A	Q	Q-1	С					
Two's Complement	0000	0111	0	4	Initialize; 1-0				
Representation	+1110				Subtract M from A (add -2)				
Basis of Booth's	1110	0111	0	4	Now shift				
Algorithm	1111	0011	1	3	Now shift				
Booth's Algorithm	1111	1001	1	2	Now shift				
Overview	1111	1100	1	1	0-1				
Registers usedOperations used	+0010	1100			Add M to A (add 2)				
 Overview of algorithm 	0001	1100	1	1	Now shift				
 The algorithm 	0000	1110	0	0	Done: answer = 14				
 Examples 	0000		Ŭ	Ŭ					

Ρ	ro	bl	er	n
	-	-	-	

Number Representation

Sign-Magnitude Representation

Two's Complement Representation

Basis of Booth's Algorithm

Booth's Algorithm

- Overview
- Registers used
- Operations used
- Overview of algorithm
- The algorithm
- Examples

omputer Science Coundations

Multiply: -63 x	$\begin{array}{c} 63 = \\ 1's = \\ -63 = \\ -M \\ 001111111 \end{array}$	001111 110000 110000	$11 \\ 000 \\ 001 \\ 110 = 0$	1101110
		5		
А	Q	Q-1	Count	
0000000	01101110	0	1000	Initial; just shift
00000000	00110111	0	0111	Entering block; add -M
001111111	00110111	0	0111	Shift
000111111	10011011	1	0110	In block; just shift
00001111	11001101	1	0101	In block; just shift
00000111	11100110	1	0100	Exiting block; add M
11001000	11100110	1	0100	Shift
11100100	011100111	0	0011	Entering block; add -M
00100011	011100111	0	0011	Shift
00010001	10111001	1	0010	In block; just shift
00001000	11011100	1	0001	Exiting block; add M
11001001	11011100	1	0001	Shift
1100100	11101110	0	0000	Done

-6930