
CS
omputer

cience

Foundations

Homework

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 1 / 32

• Reading and homework:

◦ Chapter 13

◦ Homework due 10/15 (later than usual – you’re welcome!)

• Homework keys posted soon.

• Don’t forget: Prelim I on 10/12!



CS
omputer

cience

Foundations

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 2 / 32

COS 140: Foundations of Computer Science

Booth’s Algorithm

Fall 2018



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 32

• We know how to do addition in the computer...



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 32

• We know how to do addition in the computer...

• ...but what about multiplication?



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 32

• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 32

• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times

• But can −→ lot of additions!



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 32

• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times

• But can −→ lot of additions!

E.g.: 2, 999, 111× 1, 999, 999, 999



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 32

• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times

• But can −→ lot of additions!

E.g.: 2, 999, 111× 1, 999, 999, 999
• Can we do better?



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 32

• Booth’s algorithm: algorithm for multiplication that:

◦ Uses mathematics insights ⇒ ↓↓ # additions

◦ Can be implemented in hardware



CS
omputer

cience

Foundations

The problem

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 32

• Booth’s algorithm: algorithm for multiplication that:

◦ Uses mathematics insights ⇒ ↓↓ # additions

◦ Can be implemented in hardware

• First: need to understand how to represent numbers in the

computer



CS
omputer

cience

Foundations

Numbers

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 32

• Here: focus only on integers – floating point numbers in later

class/courses



CS
omputer

cience

Foundations

Numbers

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 32

• Here: focus only on integers – floating point numbers in later

class/courses

• Many different ways have been tried

◦ E.g., binary coded decimal (BCD)

1346 = 0001 0011 0100 0110



CS
omputer

cience

Foundations

Numbers

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 32

• Here: focus only on integers – floating point numbers in later

class/courses

• Many different ways have been tried

◦ E.g., binary coded decimal (BCD)

1346 = 0001 0011 0100 0110

• This class: look at most common:

◦ Sign-magnitude representation

◦ Two’s complement representation



CS
omputer

cience

Foundations

Sign-Magnitude Representation of Numbers

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 32

• Two parts to represent number n:

◦ Sign bit:

• leftmost (high-order) bit

• 1 = negative, 0 = positive

◦ Magnitude:

• Remaining bits

• = |n|



CS
omputer

cience

Foundations

Example: Sign-Magnitude Representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 32

Represent 12 in 8-bit sign-magnitude representation



CS
omputer

cience

Foundations

Example: Sign-Magnitude Representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 32

Represent 12 in 8-bit sign-magnitude representation:

• 12 in binary is 1100

• The sign of 12 is positive, so represented as 0.

• Representation of 12: 0000 1100



CS
omputer

cience

Foundations

Example: Sign-Magnitude Representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 32

Represent −12 in 8-bit sign-magnitude representation



CS
omputer

cience

Foundations

Example: Sign-Magnitude Representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 32

Represent −12 in 8-bit sign-magnitude representation:

• 12 in binary is 1100 (0000 1100 in 8 bits)

• The sign of −12 is negative, so represented as 1.

• Representation of −12: 1000 1100



CS
omputer

cience

Foundations

Number of Bits in Representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 32

• Each computer/OS/language: several integer representations

• Differ by length (# of bits)

• Need to know how to change size of representation



CS
omputer

cience

Foundations

Changing size of representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 32

• Smaller s→ larger l:

◦ Sign bit of l = sign bit of s

◦ Magnitude of l = magnitude of s

◦ Will need to pad with 0s to left

◦ E.g., extend 1001 10102 (−2610) to 16 bits:



CS
omputer

cience

Foundations

Changing size of representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 32

• Smaller s→ larger l:

◦ Sign bit of l = sign bit of s

◦ Magnitude of l = magnitude of s

◦ Will need to pad with 0s to left

◦ E.g., extend 1001 10102 (−2610) to 16 bits:

1000 0000 0001 1010



CS
omputer

cience

Foundations

Changing size of representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 32

• Smaller s→ larger l:

◦ Sign bit of l = sign bit of s

◦ Magnitude of l = magnitude of s

◦ Will need to pad with 0s to left

◦ E.g., extend 1001 10102 (−2610) to 16 bits:

1000 0000 0001 1010

• Larger l → smaller s:

◦ Same idea

◦ Will have to truncate bits on left

◦ What if number too large?



CS
omputer

cience

Foundations

Problems with Sign Magnitude Representation

Problem

Number Representation

Sign-Magnitude

Representation

• Overview

• Example

• Examples

• # bits

• Changing size

• Problems

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 32

• Two ways to represent 0!

• Operations need to take sign bit into account

• Need both addition and subtraction logic



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

+ =

+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

+ =

+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

+ =

+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

+ =

+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer

+ =

+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

• So for 6 digits: 999999 represents −1, 999998 is −2, etc.

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

• So for 6 digits: 999999 represents −1, 999998 is −2, etc.

• For binary:

+ =

+ =



CS
omputer

cience

Foundations

Two’s Complement Representation

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 32

• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

• So for 6 digits: 999999 represents −1, 999998 is −2, etc.

• For binary:

1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0+ =

1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0+ =



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

◦ Does this work?



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

◦ Does this work?

Yes: 0235 + 9765 = 10000 which is a 4-digit 0.



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

◦ Does this work?

Yes: 0235 + 9765 = 10000 which is a 4-digit 0.

• Will it work for binary? And can we do it efficiently?



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number

• So to find 2’s complement of n:

1. Do bitwise negation of n.

2. Add 1.



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number

• So to find 2’s complement of n:

1. Do bitwise negation of n.

2. Add 1.

• Both are easy for hardware or software



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 32

• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number

• So to find 2’s complement of n:

1. Do bitwise negation of n.

2. Add 1.

• Both are easy for hardware or software

• Note that leftmost bit still denotes sign



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
◦ So find 2’s complement of 1101 1011



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
◦ So find 2’s complement of 1101 1011
◦ 2’s complement = 0010 0100 + 1 = 0010 0101 = 3710



CS
omputer

cience

Foundations

Examples

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 32

• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
◦ So find 2’s complement of 1101 1011
◦ 2’s complement = 0010 0100 + 1 = 0010 0101 = 3710
◦ So 1101 1011 represents −3710.



CS
omputer

cience

Foundations

What about 0?

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 32

• Let’s look at 8-bit 2’s complement 0:

◦ 1’s complement: 1111 1111
◦ 8-bit 2’s complement: 1111 1111 + 0000 0001 = 0000 0000

• ∴ only one representation for 0.



CS
omputer

cience

Foundations

Extending Two’s Complement to More Bits

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 32

• Pad highest order bits with the sign bit.

◦ Extend our representation of 12 to 16 bits:

0000 1100 ⇒ 0000 0000 0000 1100

◦ Extend our representation of −12 to 16 bits:

1111 0100 ⇒ 1111 1111 1111 0100



CS
omputer

cience

Foundations

Extending Two’s Complement to More Bits

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 32

• Pad highest order bits with the sign bit.

◦ Extend our representation of 12 to 16 bits:

0000 1100 ⇒ 0000 0000 0000 1100

◦ Extend our representation of −12 to 16 bits:

1111 0100 ⇒ 1111 1111 1111 0100

Check it:

0000 0000 0000 1011 – one’s complement

0000 0000 0000 1100 = 12

• When create initial representation, make sure have enough bits

to have correct sign bit.



CS
omputer

cience

Foundations

Two’s complement addition

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 32

• Simple: just add the two number, whether they’re positive or

negative!



CS
omputer

cience

Foundations

Two’s complement addition

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 32

• Simple: just add the two number, whether they’re positive or

negative!

• E.g., two positive numbers, 4-bit representation: 4 + 3
0100

+0011
(0) 0111



CS
omputer

cience

Foundations

Two’s complement addition

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 32

• Simple: just add the two number, whether they’re positive or

negative!

• E.g., two positive numbers, 4-bit representation: 4 + 3
0100

+0011
(0) 0111

• E.g., positive and negative, 4-bit representation: 4 + -3
0100

+1101
(1) 0001



CS
omputer

cience

Foundations

Two’s complement addition

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 32

• Simple: just add the two number, whether they’re positive or

negative!

• E.g., two positive numbers, 4-bit representation: 4 + 3
0100

+0011
(0) 0111

• E.g., positive and negative, 4-bit representation: 4 + -3
0100

+1101
(1) 0001

• E.g., Two negative numbers, 4-bit representation: -4 + -3
1100

+1101
(1) 1001



CS
omputer

cience

Foundations

Two’s complement subtraction

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 32

• Simple: just negate the subtrahend and add to the minuend



CS
omputer

cience

Foundations

Two’s complement subtraction

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 32

• Simple: just negate the subtrahend and add to the minuend

• E.g., what is 4− 3 in 4-bit 2’s complement arithmetic?



CS
omputer

cience

Foundations

Two’s complement subtraction

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 32

• Simple: just negate the subtrahend and add to the minuend

• E.g., what is 4− 3 in 4-bit 2’s complement arithmetic?
0100

+1101
(1) 0001



CS
omputer

cience

Foundations

What about overflow?

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 32

• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?



CS
omputer

cience

Foundations

What about overflow?

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 32

• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?

• If differ in sign: no overflow possible



CS
omputer

cience

Foundations

What about overflow?

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 32

• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?

• If differ in sign: no overflow possible

• If both positive:

◦ Overflow will → negative result

◦ E.g., 4-bit 2’s complement: 7 + 7
0111

+0111
(0) 1110



CS
omputer

cience

Foundations

What about overflow?

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 32

• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?

• If differ in sign: no overflow possible

• If both positive:

◦ Overflow will → negative result

◦ E.g., 4-bit 2’s complement: 7 + 7
0111

+0111
(0) 1110

• If both negative:

◦ Overflow will → postive result

◦ E.g., 4-bit 2’s complement: −7 +−7
1001

+1001
(1) 0010



CS
omputer

cience

Foundations

Long-hand Multiplication

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 32

• From elementary school...

• For each digit in the multiplier:

◦ Start creating partial product in the proper column.

◦ Multiply each digit in the multiplicand to form a partial product.

◦ Add all the partial products together (with each being in its

proper columns).

• Intuition for multiplication of unsigned numbers. Sped up by fact

that can only use 1’s (add the multiplicand and shift to next

column) and 0’s (shift to next column).

• We would like to not do so many additions!



CS
omputer

cience

Foundations

Insight Behind Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 32

• A block of k 1’s in a number is equal to

2n + 2n−1 . . .+ 2n−k+1

where n is determined by where the block appears.

• E.g., 0001 10002(= 2410); n = 4, k = 2:

0001 10002 = 24 + 23 = 24 + 24−2+1 = 2n + 2n−k+1

• Insight: The same block of 1’s is also equal to:

2n+1 − 2n−k+1

• E.g., 0001 10002:

0001 10002 = 25 − 23 = 32− 8 = 24

• To find value of a number, simply perform this operation when
going in or out of blocks of 1’s – saves additions



CS
omputer

cience

Foundations

Why Does This Work?

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 23 / 32

• If you think about it, adding 2n−k+1 to the number is the same as

adding a number with only a 1 in that position, which is

guaranteed to give a new number with a 1 in 2n+1 and 0’s where

the 1’s were:

011100
+000100
100000

• Let the first number be x, with k = 3 1s and n = 4
• The second number is 2n−k+1

• The sum is 2n+1

• So: x+ 2n−k+1 = 2n+1

• So: x = 2n+1 − 2n−k+1



CS
omputer

cience

Foundations

Example of Insight

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 24 / 32

Convert 11011110 to decimal.

• Standard way

◦ 27 + 26 + 24 + 23 + 22 + 21

◦ 128 + 64 + 16 + 8 + 4 + 2
◦ 222

• Using the insight:

◦ (28 − 26) + (25 − 21)
◦ (256− 64) + (32− 2)
◦ 192 + 30
◦ 222



CS
omputer

cience

Foundations

Multiplication using the insight

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 32

• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102



CS
omputer

cience

Foundations

Multiplication using the insight

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 32

• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21



CS
omputer

cience

Foundations

Multiplication using the insight

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 32

• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21

• So, multiplying both sides by 00102 gives:

01102 × 00102 = (23 − 21)× 00102



CS
omputer

cience

Foundations

Multiplication using the insight

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 32

• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21

• So, multiplying both sides by 00102 gives:

01102 × 00102 = (23 − 21)× 00102
• Which can be rewritten as: 23 × 00102 − 21 × 00102



CS
omputer

cience

Foundations

Multiplication using the insight

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 32

• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21

• So, multiplying both sides by 00102 gives:

01102 × 00102 = (23 − 21)× 00102
• Which can be rewritten as: 23 × 00102 − 21 × 00102
• This can save additions (subtractions):

◦ Old way of multiplication: addition for each 1 in multiplier

◦ This way: need 1 subtraction for each group of 1s, addition for

the partial sums (differences)

◦ Also need way to multiply by powers of two: just shifting



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 26 / 32

• Booth’s algorithm is just the implementation of this insight, with

some clever optimizations

• Requires:

◦ way to keep track of which bit we’re on

◦ way to keep track of beginning, end of sequence of 1’s

◦ way to form 2’s complement

◦ way to shift over multiplicand for adding

◦ way to add

◦ holder for product



CS
omputer

cience

Foundations

Registers Used by Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 27 / 32

Assuming n-bit numbers:

Register Size Description

Q n Initially holds multiplier, ultimately holds low-

order n bits of product

Q-1 1 Holds previous low-order bit of Q – lets us

tell if block of 1’s has started/stopped

M n Multiplicand

A n Holds high-order portion of result

Count – Holds the number of bits in the multipli-

cand/multiplier



CS
omputer

cience

Foundations

Operations Used by Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 28 / 32

Arithmetic Shift: a fast machine operation which moves all bits

over one position and repeats the sign bit (most significant bit) in

the newly open position.

Compare: a fast machine instruction that checks to see if two

bytes or words are the same

Add: a fast machine instruction that adds two numbers together

Complement: a fast machine instruction that gives the

complement of all bits (some machines may have a machine

instruction for two’s complement)



CS
omputer

cience

Foundations

Booth’s Algorithm Overview

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 32

• Will start with low-order bits of product in A (0s), multiplier in Q

• For each digit seen, regardless of what it is or what was seen

before, shift once it has been handled.

◦ This is equivalant to moving partial products over in long

multiplication.

◦ Instead of shifting multiplicand left before adding, we’ll shift

product (and multiplier) right – product shifts into Q over time,

multiplier shifts out.

• When enter a group of 1’s from the right, subtract the multiplicand

from the accumulating product.

• When leave a group of 1’s from the right, add the multiplicand to

the accumulating product.

• The last two steps apply the basic insight, multiplied by the

multiplicand.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.

(a) Arithmetic shift right A, Q, Q-1. (Shift along these registers

as though they were one continuous register.)



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.

(a) Arithmetic shift right A, Q, Q-1. (Shift along these registers

as though they were one continuous register.)

(b) Reduce the count by 1.



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 30 / 32

1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.

(a) Arithmetic shift right A, Q, Q-1. (Shift along these registers

as though they were one continuous register.)

(b) Reduce the count by 1.

(c) If count is 0 end. Result is in AQ. Otherwise, go to step 2.



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers.



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111.



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010.



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1 Now shift



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1 Now shift
0000 1110 0 0



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1 Now shift
0000 1110 0 0 Done: answer = 14



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 32 / 32

0 0 0 0 0 0 0 0     0 1 1 0 1 1 1 0     0         1 0 0 0

A Q Q-1 Count

M -M

1 1 0 0 0 0 0 1     0 0 1 1 1 1 1 1

Multiply: -63 x 110

0 0 0 0 0 0 0 0     0 1 1 0 1 1 1 0     0         1 0 0 0     Initial; just shift

0 0 0 0 0 0 0 0     0 0 1 1 0 1 1 1     0         0 1 1 1     Entering block; add -M

0 0 1 1 1 1 1 1     0 0 1 1 0 1 1 1     0         0 1 1 1     Shift

0 0 0 1 1 1 1 1     1 0 0 1 1 0 1 1     1         0 1 1 0     In block; just shift

0 0 0 0 1 1 1 1     1 1 0 0 1 1 0 1     1         0 1 0 1     In block; just shift

0 0 0 0 0 1 1 1     1 1 1 0 0 1 1 0     1         0 1 0 0     Exiting block; add M

1 1 0 0 1 0 0 0     1 1 1 0 0 1 1 0     1         0 1 0 0     Shift

1 1 1 0 0 1 0 0     0 1 1 1 0 0 1 1     0         0 0 1 1     Entering block; add -M

0 0 1 0 0 0 1 1     0 1 1 1 0 0 1 1     0         0 0 1 1     Shift

0 0 0 1 0 0 0 1     1 0 1 1 1 0 0 1     1         0 0 1 0     In block; just shift

0 0 0 0 1 0 0 0     1 1 0 1 1 1 0 0     1         0 0 0 1     Exiting block; add M

1 1 0 0 1 0 0 1     1 1 0 1 1 1 0 0     1         0 0 0 1     Shift

1 1 1 0 0 1 0 0     1 1 1 0 1 1 1 0     0         0 0 0 0     Done 

63 = 00111111
1’s = 11000000
-63 = 11000001

110 = 01101110

-6930

}


	Homework
	Problem
	The problem
	The problem

	Number Representation
	Numbers

	Sign-Magnitude Representation
	Sign-Magnitude Representation of Numbers
	Example: Sign-Magnitude Representation
	Example: Sign-Magnitude Representation
	Number of Bits in Representation
	Changing size of representation
	Problems with Sign Magnitude Representation

	Two's Complement Representation
	Two's Complement Representation
	Finding 2's complement
	Finding 2's complement
	Examples
	What about 0?
	Extending Two's Complement to More Bits
	Two's complement addition
	Two's complement subtraction
	What about overflow?

	Basis of Booth's Algorithm
	Long-hand Multiplication
	Insight Behind Booth's Algorithm
	Why Does This Work?
	Example of Insight
	Multiplication using the insight

	Booth's Algorithm
	Booth's Algorithm
	Registers Used by Booth's Algorithm
	Operations Used by Booth's Algorithm
	Booth's Algorithm Overview
	Booth's Algorithm
	Example
	Example


