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• Reading and homework:

◦ Chapter 13

◦ Homework due 10/15 (later than usual – you’re welcome!)

• Homework keys posted soon.

• Don’t forget: Prelim I on 10/12!
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COS 140: Foundations of Computer Science

Booth’s Algorithm

Fall 2018
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• We know how to do addition in the computer...
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• We know how to do addition in the computer...

• ...but what about multiplication?
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• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times
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• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times

• But can −→ lot of additions!
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• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times

• But can −→ lot of additions!

E.g.: 2, 999, 111× 1, 999, 999, 999
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• We know how to do addition in the computer...

• ...but what about multiplication?

• For n×m, could just add n to itself m times

• But can −→ lot of additions!

E.g.: 2, 999, 111× 1, 999, 999, 999
• Can we do better?
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• Booth’s algorithm: algorithm for multiplication that:

◦ Uses mathematics insights ⇒ ↓↓ # additions

◦ Can be implemented in hardware
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• Booth’s algorithm: algorithm for multiplication that:

◦ Uses mathematics insights ⇒ ↓↓ # additions

◦ Can be implemented in hardware

• First: need to understand how to represent numbers in the

computer
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• Here: focus only on integers – floating point numbers in later

class/courses
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• Here: focus only on integers – floating point numbers in later

class/courses

• Many different ways have been tried

◦ E.g., binary coded decimal (BCD)

1346 = 0001 0011 0100 0110
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• Here: focus only on integers – floating point numbers in later

class/courses

• Many different ways have been tried

◦ E.g., binary coded decimal (BCD)

1346 = 0001 0011 0100 0110

• This class: look at most common:

◦ Sign-magnitude representation

◦ Two’s complement representation
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• Two parts to represent number n:

◦ Sign bit:

• leftmost (high-order) bit

• 1 = negative, 0 = positive

◦ Magnitude:

• Remaining bits

• = |n|
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Represent 12 in 8-bit sign-magnitude representation
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Represent 12 in 8-bit sign-magnitude representation:

• 12 in binary is 1100

• The sign of 12 is positive, so represented as 0.

• Representation of 12: 0000 1100
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Represent −12 in 8-bit sign-magnitude representation
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Represent −12 in 8-bit sign-magnitude representation:

• 12 in binary is 1100 (0000 1100 in 8 bits)

• The sign of −12 is negative, so represented as 1.

• Representation of −12: 1000 1100
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• Each computer/OS/language: several integer representations

• Differ by length (# of bits)

• Need to know how to change size of representation
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• Smaller s→ larger l:

◦ Sign bit of l = sign bit of s

◦ Magnitude of l = magnitude of s

◦ Will need to pad with 0s to left

◦ E.g., extend 1001 10102 (−2610) to 16 bits:
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• Smaller s→ larger l:

◦ Sign bit of l = sign bit of s

◦ Magnitude of l = magnitude of s

◦ Will need to pad with 0s to left

◦ E.g., extend 1001 10102 (−2610) to 16 bits:

1000 0000 0001 1010
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• Smaller s→ larger l:

◦ Sign bit of l = sign bit of s

◦ Magnitude of l = magnitude of s

◦ Will need to pad with 0s to left

◦ E.g., extend 1001 10102 (−2610) to 16 bits:

1000 0000 0001 1010

• Larger l → smaller s:

◦ Same idea

◦ Will have to truncate bits on left

◦ What if number too large?
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• Two ways to represent 0!

• Operations need to take sign bit into account

• Need both addition and subtraction logic
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• Positive numbers: same as sign-magnitude representation

+ =

+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

+ =

+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

+ =

+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

+ =

+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer

+ =

+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

• So for 6 digits: 999999 represents −1, 999998 is −2, etc.

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

• So for 6 digits: 999999 represents −1, 999998 is −2, etc.

• For binary:

+ =

+ =
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• Positive numbers: same as sign-magnitude representation

• Negative numbers: use the number’s two’s complement

The 2’s complement of an b−bit binary number n is the

number n′ such that the b−bit sum s = n+ n′ = 0.

• Since n+ n′ = 0 ⇒ n′ = −n

• Analogy – an odometer:

9 9 9 9 9 9 0 0 0 0 0 1 0 0 0 0 0 0+ =

9 9 9 9 9 8 0 0 0 0 0 2 0 0 0 0 0 0+ =

• So for 6 digits: 999999 represents −1, 999998 is −2, etc.

• For binary:

1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0+ =

1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0+ =
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• One way (e.g., 4-digit numbers):
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n



CS
omputer

cience

Foundations

Finding 2’s complement

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

• Overview

• Computing

• Examples

• Zero?

• Extending size

• Addition

• Subtraction

• Overflow

Basis of Booth’s

Algorithm

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 32

• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

◦ Does this work?
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

◦ Does this work?

Yes: 0235 + 9765 = 10000 which is a 4-digit 0.
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• One way (e.g., 4-digit numbers):

◦ n+ n′ = (1)0000
◦ ⇒ n′ = (1)0000− n

◦ E.g., 10’s complement of 0004 = 10000− 4 = 9996
◦ E.g., 2’s complement of 00102 = 10000− 10 = 1110

• Want a more efficient way

• For 4-digit 10’s complement:

◦ What number can I add to n to get 9999?

◦ Find that, add 1, should be the 10’s complement

◦ E.g., 10’s complement of 0235

= 9999 - 235 + 1 = 9764 + 1 = 9765

◦ Does this work?

Yes: 0235 + 9765 = 10000 which is a 4-digit 0.

• Will it work for binary? And can we do it efficiently?
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• Problem: How to efficiently find the 2’s complement?
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number

• So to find 2’s complement of n:

1. Do bitwise negation of n.

2. Add 1.
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number

• So to find 2’s complement of n:

1. Do bitwise negation of n.

2. Add 1.

• Both are easy for hardware or software
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• Problem: How to efficiently find the 2’s complement?

• Example: find 8-bit 2’s complement of 1000 1100

◦ First find number I can add to give 1111 1111, then add 1

◦ 1000 1100 + 0111 0011 = 1111 1111, so...

◦ ...0111 0011 + 1 = 0111 0100 = 2’s complement of

1000 1100

• In example, 0111 0011 is the 1’s complement of 1000 1100
• Easy (efficient) to find: bitwise negation of number

• So to find 2’s complement of n:

1. Do bitwise negation of n.

2. Add 1.

• Both are easy for hardware or software

• Note that leftmost bit still denotes sign
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
◦ So find 2’s complement of 1101 1011
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
◦ So find 2’s complement of 1101 1011
◦ 2’s complement = 0010 0100 + 1 = 0010 0101 = 3710
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• Problem: Represent 37 in 8-bit 2’s complement form

◦ Convert to binary: 0010 0101
◦ It’s positive ⇒ done.

• Problem: Represent −37 in 8-bit 2’s complement form

◦ Negative ⇒ find 8-bit 2’s complement of 37

◦ Convert 37 to binary: 0010 0101
◦ Find 1’s complement: 1101 1010
◦ Add 1: 1101 1010 + 1 = 1101 1011

• Is this correct?

◦ If 1101 1011 is −n, then n = −(−n) = −(1101 1011)
◦ So find 2’s complement of 1101 1011
◦ 2’s complement = 0010 0100 + 1 = 0010 0101 = 3710
◦ So 1101 1011 represents −3710.
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• Let’s look at 8-bit 2’s complement 0:

◦ 1’s complement: 1111 1111
◦ 8-bit 2’s complement: 1111 1111 + 0000 0001 = 0000 0000

• ∴ only one representation for 0.
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• Pad highest order bits with the sign bit.

◦ Extend our representation of 12 to 16 bits:

0000 1100 ⇒ 0000 0000 0000 1100

◦ Extend our representation of −12 to 16 bits:

1111 0100 ⇒ 1111 1111 1111 0100
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• Pad highest order bits with the sign bit.

◦ Extend our representation of 12 to 16 bits:

0000 1100 ⇒ 0000 0000 0000 1100

◦ Extend our representation of −12 to 16 bits:

1111 0100 ⇒ 1111 1111 1111 0100

Check it:

0000 0000 0000 1011 – one’s complement

0000 0000 0000 1100 = 12

• When create initial representation, make sure have enough bits

to have correct sign bit.
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• Simple: just add the two number, whether they’re positive or

negative!
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• Simple: just add the two number, whether they’re positive or

negative!

• E.g., two positive numbers, 4-bit representation: 4 + 3
0100

+0011
(0) 0111
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• Simple: just add the two number, whether they’re positive or

negative!

• E.g., two positive numbers, 4-bit representation: 4 + 3
0100

+0011
(0) 0111

• E.g., positive and negative, 4-bit representation: 4 + -3
0100

+1101
(1) 0001
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• Simple: just add the two number, whether they’re positive or

negative!

• E.g., two positive numbers, 4-bit representation: 4 + 3
0100

+0011
(0) 0111

• E.g., positive and negative, 4-bit representation: 4 + -3
0100

+1101
(1) 0001

• E.g., Two negative numbers, 4-bit representation: -4 + -3
1100

+1101
(1) 1001
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• Simple: just negate the subtrahend and add to the minuend
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• Simple: just negate the subtrahend and add to the minuend

• E.g., what is 4− 3 in 4-bit 2’s complement arithmetic?
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• Simple: just negate the subtrahend and add to the minuend

• E.g., what is 4− 3 in 4-bit 2’s complement arithmetic?
0100

+1101
(1) 0001
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• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?
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• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?

• If differ in sign: no overflow possible
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• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?

• If differ in sign: no overflow possible

• If both positive:

◦ Overflow will → negative result

◦ E.g., 4-bit 2’s complement: 7 + 7
0111

+0111
(0) 1110
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• Overflow: when result of computation can’t be stored in

representation

• E.g., 255 + 255 in 8-bit representation

• How to detect in 2’s complement?

• If differ in sign: no overflow possible

• If both positive:

◦ Overflow will → negative result

◦ E.g., 4-bit 2’s complement: 7 + 7
0111

+0111
(0) 1110

• If both negative:

◦ Overflow will → postive result

◦ E.g., 4-bit 2’s complement: −7 +−7
1001

+1001
(1) 0010
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• From elementary school...

• For each digit in the multiplier:

◦ Start creating partial product in the proper column.

◦ Multiply each digit in the multiplicand to form a partial product.

◦ Add all the partial products together (with each being in its

proper columns).

• Intuition for multiplication of unsigned numbers. Sped up by fact

that can only use 1’s (add the multiplicand and shift to next

column) and 0’s (shift to next column).

• We would like to not do so many additions!



CS
omputer

cience

Foundations

Insight Behind Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

• Multiplication

• Booth’s insight

• Why Does This

Work?

• Example

• Multiplication using

the insight

Booth’s Algorithm

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 32

• A block of k 1’s in a number is equal to

2n + 2n−1 . . .+ 2n−k+1

where n is determined by where the block appears.

• E.g., 0001 10002(= 2410); n = 4, k = 2:

0001 10002 = 24 + 23 = 24 + 24−2+1 = 2n + 2n−k+1

• Insight: The same block of 1’s is also equal to:

2n+1 − 2n−k+1

• E.g., 0001 10002:

0001 10002 = 25 − 23 = 32− 8 = 24

• To find value of a number, simply perform this operation when
going in or out of blocks of 1’s – saves additions
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• If you think about it, adding 2n−k+1 to the number is the same as

adding a number with only a 1 in that position, which is

guaranteed to give a new number with a 1 in 2n+1 and 0’s where

the 1’s were:

011100
+000100
100000

• Let the first number be x, with k = 3 1s and n = 4
• The second number is 2n−k+1

• The sum is 2n+1

• So: x+ 2n−k+1 = 2n+1

• So: x = 2n+1 − 2n−k+1
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Convert 11011110 to decimal.

• Standard way

◦ 27 + 26 + 24 + 23 + 22 + 21

◦ 128 + 64 + 16 + 8 + 4 + 2
◦ 222

• Using the insight:

◦ (28 − 26) + (25 − 21)
◦ (256− 64) + (32− 2)
◦ 192 + 30
◦ 222
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• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
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• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21
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• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21

• So, multiplying both sides by 00102 gives:

01102 × 00102 = (23 − 21)× 00102
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• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21

• So, multiplying both sides by 00102 gives:

01102 × 00102 = (23 − 21)× 00102
• Which can be rewritten as: 23 × 00102 − 21 × 00102
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• Suppose we have a number such as 01102 we wish to multiply

by another number, say 00102
• We know that:

01102 = 23 − 21

• So, multiplying both sides by 00102 gives:

01102 × 00102 = (23 − 21)× 00102
• Which can be rewritten as: 23 × 00102 − 21 × 00102
• This can save additions (subtractions):

◦ Old way of multiplication: addition for each 1 in multiplier

◦ This way: need 1 subtraction for each group of 1s, addition for

the partial sums (differences)

◦ Also need way to multiply by powers of two: just shifting



CS
omputer

cience

Foundations

Booth’s Algorithm

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 26 / 32

• Booth’s algorithm is just the implementation of this insight, with

some clever optimizations

• Requires:

◦ way to keep track of which bit we’re on

◦ way to keep track of beginning, end of sequence of 1’s

◦ way to form 2’s complement

◦ way to shift over multiplicand for adding

◦ way to add

◦ holder for product
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Assuming n-bit numbers:

Register Size Description

Q n Initially holds multiplier, ultimately holds low-

order n bits of product

Q-1 1 Holds previous low-order bit of Q – lets us

tell if block of 1’s has started/stopped

M n Multiplicand

A n Holds high-order portion of result

Count – Holds the number of bits in the multipli-

cand/multiplier
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Arithmetic Shift: a fast machine operation which moves all bits

over one position and repeats the sign bit (most significant bit) in

the newly open position.

Compare: a fast machine instruction that checks to see if two

bytes or words are the same

Add: a fast machine instruction that adds two numbers together

Complement: a fast machine instruction that gives the

complement of all bits (some machines may have a machine

instruction for two’s complement)
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• Will start with low-order bits of product in A (0s), multiplier in Q

• For each digit seen, regardless of what it is or what was seen

before, shift once it has been handled.

◦ This is equivalant to moving partial products over in long

multiplication.

◦ Instead of shifting multiplicand left before adding, we’ll shift

product (and multiplier) right – product shifts into Q over time,

multiplier shifts out.

• When enter a group of 1’s from the right, subtract the multiplicand

from the accumulating product.

• When leave a group of 1’s from the right, add the multiplicand to

the accumulating product.

• The last two steps apply the basic insight, multiplied by the

multiplicand.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.

(a) Arithmetic shift right A, Q, Q-1. (Shift along these registers

as though they were one continuous register.)
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.

(a) Arithmetic shift right A, Q, Q-1. (Shift along these registers

as though they were one continuous register.)

(b) Reduce the count by 1.
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1. Initialize registers with proper information. Count is the number

of bits, A is 0, and Q-1 is 0. Q is the multiplier.

2. Compare the least significant bit of Q and Q-1 to see if entering

or leaving a group of 1’s:

(a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M

from A.

(b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.

(c) Otherwise, do nothing.

3. Prepare for next bit.

(a) Arithmetic shift right A, Q, Q-1. (Shift along these registers

as though they were one continuous register.)

(b) Reduce the count by 1.

(c) If count is 0 end. Result is in AQ. Otherwise, go to step 2.
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2 times 7, using 4 bit numbers.
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111.
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010.
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 31 / 32

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1 Now shift
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1 Now shift
0000 1110 0 0
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2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand

(M) is 0010. Two’s complement of multiplicand: 1110.

A Q Q-1 C
0000 0111 0 4 Initialize; 1-0...

+1110 Subtract M from A (add -2)
1110 0111 0 4 Now shift
1111 0011 1 3 Now shift
1111 1001 1 2 Now shift
1111 1100 1 1 0-1...

+0010 Add M to A (add 2)
0001 1100 1 1 Now shift
0000 1110 0 0 Done: answer = 14



CS
omputer

cience

Foundations

Example

Problem

Number Representation

Sign-Magnitude

Representation

Two’s Complement

Representation

Basis of Booth’s

Algorithm

Booth’s Algorithm

• Overview

• Registers used

• Operations used

• Overview of algorithm

• The algorithm

• Examples

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 32 / 32

0 0 0 0 0 0 0 0     0 1 1 0 1 1 1 0     0         1 0 0 0

A Q Q-1 Count

M -M

1 1 0 0 0 0 0 1     0 0 1 1 1 1 1 1

Multiply: -63 x 110

0 0 0 0 0 0 0 0     0 1 1 0 1 1 1 0     0         1 0 0 0     Initial; just shift

0 0 0 0 0 0 0 0     0 0 1 1 0 1 1 1     0         0 1 1 1     Entering block; add -M

0 0 1 1 1 1 1 1     0 0 1 1 0 1 1 1     0         0 1 1 1     Shift

0 0 0 1 1 1 1 1     1 0 0 1 1 0 1 1     1         0 1 1 0     In block; just shift

0 0 0 0 1 1 1 1     1 1 0 0 1 1 0 1     1         0 1 0 1     In block; just shift

0 0 0 0 0 1 1 1     1 1 1 0 0 1 1 0     1         0 1 0 0     Exiting block; add M

1 1 0 0 1 0 0 0     1 1 1 0 0 1 1 0     1         0 1 0 0     Shift

1 1 1 0 0 1 0 0     0 1 1 1 0 0 1 1     0         0 0 1 1     Entering block; add -M

0 0 1 0 0 0 1 1     0 1 1 1 0 0 1 1     0         0 0 1 1     Shift

0 0 0 1 0 0 0 1     1 0 1 1 1 0 0 1     1         0 0 1 0     In block; just shift

0 0 0 0 1 0 0 0     1 1 0 1 1 1 0 0     1         0 0 0 1     Exiting block; add M

1 1 0 0 1 0 0 1     1 1 0 1 1 1 0 0     1         0 0 0 1     Shift

1 1 1 0 0 1 0 0     1 1 1 0 1 1 1 0     0         0 0 0 0     Done 

63 = 00111111
1’s = 11000000
-63 = 11000001

110 = 01101110

-6930

}
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