### Homework

□ Reading and homework:

- Chapter 13
- Homework due 10/15 (later than usual you're welcome!)
- $\Box$  Homework keys posted soon.
- □ Don't forget: Prelim I on 10/12!

Copyright  $\odot$  2002–2018 UMaine Computer Science Department – 1 / 32

### COS 140: Foundations of Computer Science

Booth's Algorithm

Fall 2018

| Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Number Representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                |
| Sign-Magnitude Representation         Overview         Example         Examples         # bits         Changing size         Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7<br>8<br>9<br>10                |
| Two's Complement Representation       Overview         Overview       Overview         Computing       Examples         Zero?       Extending size         Addition       Subtraction         Overflow       Overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13<br>15<br>16<br>17<br>18<br>19 |
| Basis of Booth's Algorithm       Image: State of Booth's Algorithm       Image: State of Booth's Algorithm         Multiplication       Image: State of Booth's Im | 22<br>23<br>24                   |
| Booth's Algorithm Overview Registers used Operations used Overview of algorithm The algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>28<br>29                   |

| mples |
|-------|
|-------|

### Problem

### The problem

- $\hfill\square$  We know how to do addition in the computer...
- $\hfill\square$  ...but what about multiplication?
- $\hfill\square$   $\quad$  For  $n\times m\text{, could just add }n$  to itself m times
- $\Box \quad \mathsf{But can} \longrightarrow \mathsf{lot of additions!}$

### E.g.: $2,999,111 \times 1,999,999,999$

 $\hfill\square$  Can we do better?

Copyright © 2002–2018 UMaine Computer Science Department – 3 / 32

### The problem

- □ Booth's algorithm: algorithm for multiplication that:
  - Uses mathematics insights  $\Rightarrow \downarrow \downarrow \#$  additions
  - Can be implemented in hardware
- □ First: need to understand how to represent numbers in the computer

Copyright © 2002-2018 UMaine Computer Science Department - 4 / 32

### **Number Representation**

### Numbers

 $\hfill\square$  Here: focus only on integers – floating point numbers in later class/courses

- $\hfill\square$  Many different ways have been tried
  - E.g., binary coded decimal (BCD)

 $1346 = 0001 \ 0011 \ 0100 \ 0110$ 

□ This class: look at most common:

- Sign-magnitude representation
- Two's complement representation

Copyright © 2002–2018 UMaine Computer Science Department – 5 / 32

5 / 32

### Sign-Magnitude Representation of Numbers

- $\Box$  Two parts to represent number *n*:
  - Sign bit:
    - ▷ leftmost (high-order) bit
    - $_{\triangleright}$  1 = negative, 0 = positive
  - Magnitude:
    - ▶ Remaining bits
    - $\mathbf{r} = |n|$

Copyright  $\bigodot$  2002–2018 UMaine Computer Science Department – 6 / 32

### **Example: Sign-Magnitude Representation**

Represent 12 in 8-bit sign-magnitude representation:

- $\hfill\square$  12 in binary is 1100
- $\hfill\square$  The sign of 12 is positive, so represented as 0.
- $\Box$  Representation of 12: 0000 1100

Copyright © 2002–2018 UMaine Computer Science Department – 7 / 32

### **Example: Sign-Magnitude Representation**

Represent -12 in 8-bit sign-magnitude representation:

- $\Box$  12 in binary is 1100 (0000 1100 in 8 bits)
- $\hfill\square$  The sign of -12 is negative, so represented as 1.
- $\hfill\square$  Representation of -12: 1000 1100

Copyright © 2002–2018 UMaine Computer Science Department - 8 / 32

### Number of Bits in Representation

- □ Each computer/OS/language: several integer representations
- $\Box$  Differ by length (# of bits)
- $\hfill\square$   $\hfill$  Need to know how to change size of representation

Copyright © 2002–2018 UMaine Computer Science Department – 9 / 32

### Changing size of representation

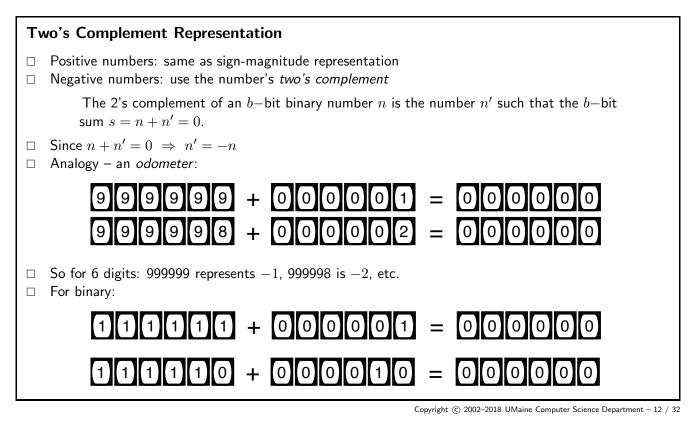
- $\Box$  Smaller  $s \rightarrow \text{larger } l$ :
  - Sign bit of l = sign bit of s
  - Magnitude of l = magnitude of s
  - Will need to pad with 0s to left
  - E.g., extend  $1001 \ 1010_2 \ (-26_{10})$  to 16 bits: 1000 0000 0001 1010
- $\Box$  Larger  $l \rightarrow$  smaller s:
  - Same idea
  - Will have to *truncate* bits on left
  - What if number too large?

Copyright © 2002–2018 UMaine Computer Science Department – 10 / 32

### Problems with Sign Magnitude Representation

- $\Box$  *Two* ways to represent 0!
- $\hfill\square$  Operations need to take sign bit into account
- $\hfill\square$  Need both addition and subtraction logic

Copyright © 2002–2018 UMaine Computer Science Department – 11 / 32



# Finding 2's complement One way (e.g., 4-digit numbers): n + n' = (1)0000 $\Rightarrow n' = (1)0000 - n$ E.g., 10's complement of 0004 = 10000 - 4 = 9996 E.g., 2's complement of $0010_2 = 10000 - 10 = 1110$ Want a more efficient way For 4-digit 10's complement: What number can I add to n to get 9999? Find that, add 1, should be the 10's complement E.g., 10's complement of 0235 = 9999 - 235 + 1 = 9764 + 1 = 9765 Does this work? Yes: 0235 + 9765 = 10000 which is a 4-digit 0. Will it work for binary? And can we do it efficiently?

Copyright  $\odot$  2002–2018 UMaine Computer Science Department – 13 / 32

### Finding 2's complement

- □ Problem: How to *efficiently* find the 2's complement?
- $\hfill\square$  Example: find 8-bit 2's complement of  $1000\,1100$ 
  - First find number I can add to give 11111111, then add 1
  - $1000 \ 1100 + 0111 \ 0011 = 1111 \ 1111$ , so...
  - ...01110011 + 1 = 01110100 = 2's complement of 10001100
- $\Box$  In example, 01110011 is the 1's complement of 10001100
- □ Easy (efficient) to find: *bitwise negation* of number
- $\Box$  So to find 2's complement of *n*:
  - 1. Do bitwise negation of n.
  - 2. Add 1.
- $\hfill\square$  Both are easy for hardware or software
- $\hfill\square$  Note that leftmost bit still denotes sign

Copyright © 2002–2018 UMaine Computer Science Department – 14 / 32

### Examples

```
\hfill\square Problem: Represent 37 in 8-bit 2's complement form
```

- Convert to binary: 00100101
- It's positive  $\Rightarrow$  done.
- $\hfill\square$  Problem: Represent -37 in 8-bit 2's complement form
  - Negative  $\Rightarrow$  find 8-bit 2's complement of 37
  - Convert 37 to binary: 00100101
  - Find 1's complement: 11011010
  - Add 1: 11011010 + 1 = 11011011
- $\Box$  Is this correct?
  - If 1101 1011 is -n, then n = -(-n) = -(1101 1011)
  - So find 2's complement of 11011011
  - 2's complement =  $00100100 + 1 = 00100101 = 37_{10}$
  - So  $1101\ 1011$  represents  $-37_{10}$ .

Copyright © 2002–2018 UMaine Computer Science Department - 15 / 32

### What about 0?

- □ Let's look at 8-bit 2's complement 0:
  - 1's complement: 11111111
  - 8-bit 2's complement: 11111111 + 00000001 = 00000000
- $\Box$  ... only one representation for 0.

Copyright © 2002–2018 UMaine Computer Science Department – 16 / 32

| Extending Two's Complement to More Bits                                                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\Box$ Pad highest order bits with the sign bit.                                           |  |  |  |  |  |  |
| - Extend our representation of 12 to 16 bits:                                              |  |  |  |  |  |  |
| $0000\ 1100 \Rightarrow 0000\ 0000\ 0000\ 1100$                                            |  |  |  |  |  |  |
| – Extend our representation of $-12$ to 16 bits:                                           |  |  |  |  |  |  |
| $1111\ 0100 \Rightarrow 1111\ 1111\ 0100$                                                  |  |  |  |  |  |  |
| Check it:<br>0000 0000 0000 1011 - one's complement<br>0000 0000 0000 1100 = 12            |  |  |  |  |  |  |
| □ When create initial representation, make sure have enough bits to have correct sign bit. |  |  |  |  |  |  |

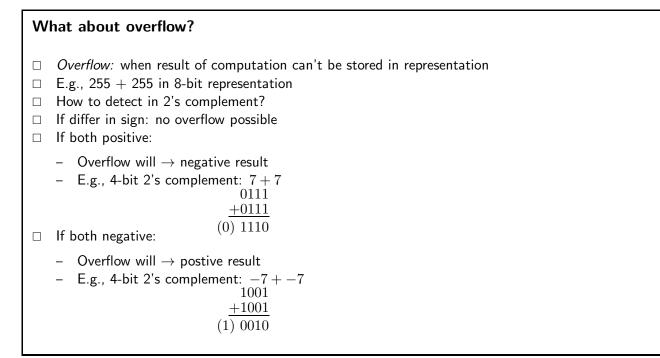
Copyright © 2002–2018 UMaine Computer Science Department – 17 / 32

| Т١ | Two's complement addition                                                                                                                                   |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | Simple: just add the two number, whether they're positive <i>or</i> negative!<br>E.g., two positive numbers, 4-bit representation: $4 + 3$<br>0100<br>+0011 |  |  |  |  |  |
|    | (0) 0111                                                                                                                                                    |  |  |  |  |  |
|    | E.g., positive and negative, 4-bit representation: 4 + -3<br>$\begin{array}{c} 0100\\ \underline{+1101}\\ (1)\ 0001\end{array}$                             |  |  |  |  |  |
|    | E.g., Two negative numbers, 4-bit representation: -4 + -3 $1100$ $+1101$ (1) 1001                                                                           |  |  |  |  |  |

Copyright  $\bigcirc$  2002–2018 UMaine Computer Science Department – 18 / 32

## Two's complement subtraction $\Box$ Simple: just negate the subtrahend and add to the minuend $\Box$ E.g., what is 4 - 3 in 4-bit 2's complement arithmetic?0100+1101(1) 0001

Copyright © 2002–2018 UMaine Computer Science Department – 19 / 32



Copyright © 2002–2018 UMaine Computer Science Department - 20 / 32

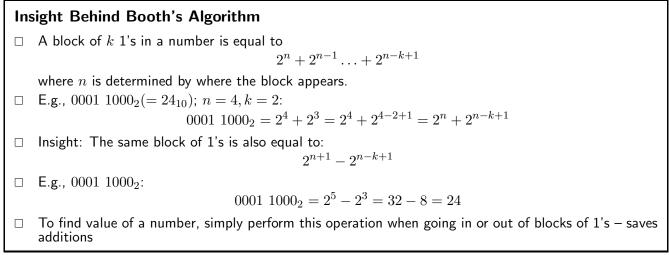
21 / 32

### **Basis of Booth's Algorithm**

### Long-hand Multiplication

- □ From elementary school...
- $\hfill\square$  For each digit in the multiplier:
  - Start creating partial product in the proper column.
  - Multiply each digit in the multiplicand to form a partial product.
  - Add all the partial products together (with each being in its proper columns).
- □ Intuition for multiplication of unsigned numbers. Sped up by fact that can only use 1's (add the multiplicand and shift to next column) and 0's (shift to next column).
- $\hfill\square$  We would like to not do so many additions!

Copyright © 2002–2018 UMaine Computer Science Department - 21 / 32



Copyright © 2002–2018 UMaine Computer Science Department - 22 / 32

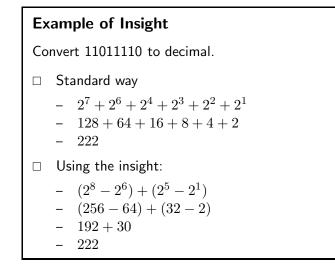
### Why Does This Work?

 $\Box$  If you think about it, adding  $2^{n-k+1}$  to the number is the same as adding a number with only a 1 in that position, which is guaranteed to give a new number with a 1 in  $2^{n+1}$  and 0's where the 1's were:

$$\begin{array}{r}
 011100 \\
 +000100 \\
 100000
 \end{array}$$

- $\Box$  Let the first number be x, with k = 3 1s and n = 4
- $\Box$  The second number is  $2^{n-k+1}$
- $\Box$  The sum is  $2^{n+1}$
- $\Box$  So:  $x + 2^{n-k+1} = 2^{n+1}$
- $\Box$  So:  $x = 2^{n+1} 2^{n-k+1}$

Copyright © 2002–2018 UMaine Computer Science Department – 23 / 32



Copyright © 2002–2018 UMaine Computer Science Department – 24 / 32

### Multiplication using the insight Suppose we have a number such as 0110₂ we wish to multiply by another number, say 0010₂ We know that: 0110₂ = 2<sup>3</sup> - 2<sup>1</sup> So, multiplying both sides by 0010₂ gives: 0110₂ × 0010₂ = (2<sup>3</sup> - 2<sup>1</sup>) × 0010₂ Which can be rewritten as: 2<sup>3</sup> × 0010₂ - 2<sup>1</sup> × 0010₂ This can save additions (subtractions): Old way of multiplication: addition for each 1 in multiplier This way: need 1 subtraction for each group of 1s, addition for the partial sums (differences) Also need way to multiply by powers of two: just shifting

Copyright  $\bigodot$  2002–2018 UMaine Computer Science Department – 25 / 32

### **Booth's Algorithm**

- □ Booth's algorithm is just the implementation of this insight, with some clever optimizations
- $\Box$  Requires:
  - way to keep track of which bit we're on
  - way to keep track of beginning, end of sequence of 1's
  - way to form 2's complement
  - way to *shift* over multiplicand for adding
  - way to add
  - holder for product

Copyright © 2002–2018 UMaine Computer Science Department – 26 / 32

### Registers Used by Booth's Algorithm

Assuming n-bit numbers:

| Register | <u>Size</u> | Description                                 |  |  |  |  |  |  |
|----------|-------------|---------------------------------------------|--|--|--|--|--|--|
| Q        | n           | Initially holds multiplier, ultimately      |  |  |  |  |  |  |
|          |             | holds low-order $n$ bits of product         |  |  |  |  |  |  |
| Q-1      | 1           | Holds previous low-order bit of Q – lets    |  |  |  |  |  |  |
|          |             | us tell if block of 1's has started/stopped |  |  |  |  |  |  |
| М        | n           | Multiplicand                                |  |  |  |  |  |  |
| А        | n           | Holds high-order portion of result          |  |  |  |  |  |  |
| Count    | _           | Holds the number of bits in the multi-      |  |  |  |  |  |  |
|          |             | plicand/multiplier                          |  |  |  |  |  |  |
|          |             |                                             |  |  |  |  |  |  |

Copyright © 2002–2018 UMaine Computer Science Department - 27 / 32

### **Operations Used by Booth's Algorithm**

**Arithmetic Shift:** a fast machine operation which moves all bits over one position and repeats the sign bit (most significant bit) in the newly open position.

**Compare:** a fast machine instruction that checks to see if two bytes or words are the same **Add:** a fast machine instruction that adds two numbers together

**Complement:** a fast machine instruction that gives the complement of all bits (some machines may have a machine instruction for two's complement)

Copyright © 2002–2018 UMaine Computer Science Department – 28 / 32

### Booth's Algorithm Overview

- $\hfill\square$  Will start with low-order bits of product in A (0s), multiplier in Q
- $\hfill\square$  For each digit seen, regardless of what it is or what was seen before, shift once it has been handled.
  - This is equivalant to moving partial products over in long multiplication.
  - Instead of shifting multiplicand left before adding, we'll shift product (and multiplier) right product shifts into Q over time, multiplier shifts out.
- $\hfill\square$  When enter a group of 1's from the right, subtract the multiplicand from the accumulating product.
- $\hfill\square$  When leave a group of 1's from the right, add the multiplicand to the accumulating product.
- $\hfill\square$  The last two steps apply the basic insight, multiplied by the multiplicand.

Copyright © 2002–2018 UMaine Computer Science Department – 29 / 32

**Booth's Algorithm** 1. Initialize registers with proper information. Count is the number of bits, A is 0, and Q-1 is 0. Q is the multiplier.

- 2. Compare the least significant bit of Q and Q-1 to see if entering or leaving a group of 1's:
  - (a) If the least significant bit of Q is 1 and Q-1 is 0, subtract M from A.
  - (b) If the least significant bit of Q is 0 and Q-1 is 1, add M to A.
  - (c) Otherwise, do nothing.
- 3. Prepare for next bit.
  - (a) Arithmetic shift right A, Q, Q-1. (Shift along these registers as though they were one continuous register.)
  - (b) Reduce the count by 1.
  - (c) If count is 0 end. Result is in AQ. Otherwise, go to step 2.

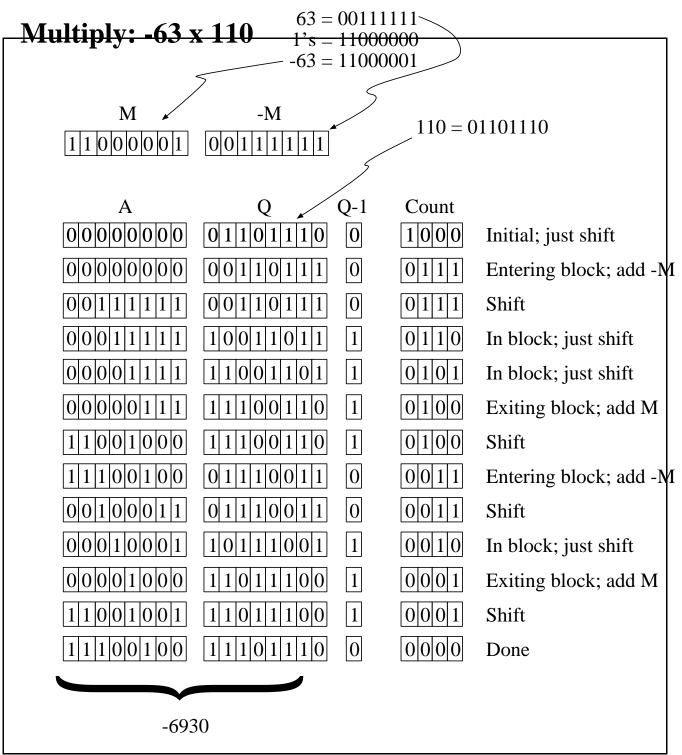
Copyright  $\odot$  2002–2018 UMaine Computer Science Department – 30 / 32

### Example

2 times 7, using 4 bit numbers. Multiplier (Q) is 0111. Multiplicand (M) is 0010. Two's complement of multiplicand: 1110.

| A     | Q    | Q-1 | С |                            |
|-------|------|-----|---|----------------------------|
| 0000  | 0111 | 0   | 4 | Initialize; 1-0            |
| +1110 |      |     |   | Subtract M from A (add -2) |
| 1110  | 0111 | 0   | 4 | Now shift                  |
| 1111  | 0011 | 1   | 3 | Now shift                  |
| 1111  | 1001 | 1   | 2 | Now shift                  |
| 1111  | 1100 | 1   | 1 | 0-1                        |
| +0010 |      |     |   | Add M to A (add 2)         |
| 0001  | 1100 | 1   | 1 | Now shift                  |
| 0000  | 1110 | 0   | 0 | Done: answer $= 14$        |
|       |      |     |   |                            |

Copyright © 2002-2018 UMaine Computer Science Department - 31 / 32



Copyright © 2002–2018 UMaine Computer Science Department - 32 / 32