COS 140: Foundations of Computer Science

Boolean Algebra

Fall 2018

Homework and announcements!

Introduction

Proofs

Laws

- Reading: Chapter 5
- Homework: exercises 1–6
 - Exercise 7 for extra credit
 - Due: 1 week + 1 class from today (i.e., 9/21)
- Don't forget recitation this week!
- Slides: online now

Problem

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

- Computers compute digital logic functions
- Need some way to describe those functions
- For some ordinary mathematical functions, algebra works well
- But the functions we want aren't numeric, but give true/false (1/0) values
- What can we use?

Boolean algebra

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

- Boolean algebra is analogous to "regular" algebra, but for true/false values
- Well-known, well-developed mathematical foundation for digital logic.
- Provides a formalism for specifying the functions that we wish to have performed.
- Provides a mechanism for proving circuits are equivalent.
- Named for George Boole, a 19th-century mathematician.

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

Boolean operators correspond to gates and have same truth tables as corresponding gate.

• NOT: NOT $A, \neg A, \overline{A}, A'$

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- NOT: NOT $A, \neg A, \overline{A}, A'$
- AND: A AND B, $A \cdot B$, AB, $A \wedge B$

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- NOT: NOT $A, \neg A, \overline{A}, A'$
- AND: A AND B, $A \cdot B$, AB, $A \wedge B$
- OR: A OR B, A + B, $A \vee B$

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- NOT: NOT $A, \neg A, \overline{A}, A'$
- AND: A AND B, $A \cdot B$, AB, $A \wedge B$
- OR: $A ext{ OR } B, A + B, A \vee B$
- NAND: A nand $B,\ A|B,\ A\uparrow B,\ \overline{AB}$

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- NOT: NOT $A, \neg A, \overline{A}, A'$
- AND: A AND B, $A \cdot B$, AB, $A \wedge B$
- OR: $A ext{ OR } B, A + B, A \vee B$
- NAND: A NAND B, A|B, $A \uparrow B$, \overline{AB}
- NOR: $A \text{ NOR } B, A \downarrow B, (A+B)$

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- NOT: NOT $A, \neg A, \overline{A}, A'$
- AND: A AND B, $A \cdot B$, AB, $A \wedge B$
- OR: A OR B, A + B, $A \vee B$
- NAND: A nand $B,\ A|B,\ A\uparrow B,\ \overline{AB}$
- NOR: $A \text{ NOR } B, \ A \downarrow B, \ (A+B)$
- XOR: A XOR B, $A \oplus B$

Boolean Algebra Expressions

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

- What is an expression?
- Value of an expression

 depends on the values of the variables
- Evaluate expression: assign values to variables, performing the operations
- Can create an expression for a function by determining when the function should be 1, then writing an expression that is 1 in only those cases.

Boolean Algebra Expressions

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- What is an *expression*?
- Value of an expression

 depends on the values of the variables
- Evaluate expression: assign values to variables, performing the operations
- Can create an expression for a function by determining when the function should be 1, then writing an expression that is 1 in only those cases.

Example: Create a 3-variable expression that equals 1 when all of the inputs are 1, or when one, and only one, input is 0.

Boolean Algebra Expressions

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Using the Laws

- What is an expression?
- Value of an expression \leftarrow depends on the values of the variables
- Evaluate expression: assign values to variables, performing the operations
- Can create an expression for a function by determining when the function should be 1, then writing an expression that is 1 in only those cases.

Example: Create a 3-variable expression that equals 1 when all of the inputs are 1, or when one, and only one, input is 0.

$$ABC + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

Operator Precedence for Boolean Algebra

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

Operator Precedence for Boolean Algebra

Introduction

- Problem
- Boolean algebra
- Operators
- Expressions
- Precedence

Proofs

Laws

- Subexpressions inside of parentheses, beginning with innermost parentheses.
- NOT
- AND
- OR
- Evaluate A NAND B as NOT($A \wedge B$) and A NOR B as NOT($A \vee B$)
- Evaluate subexpressions of equal precedence from left to right.

Proofs of Equivalence

Introduction

Proofs

- Equivalence
- Proof by Truth Table
- Algebraic substitution

Laws

- Two ways: truth tables and algebraic substitution
- Truth table method: if truth table for expression A same as for expression B, then $A \equiv B$
- Algebraic substitution method:
 - Use laws of Boolean algebra to transform one expression into the other
 - Proofs have to be convincing to others
 - Have to provide enough detail to show how one step follows from another
 - Have to provide justification for each step

Proof by Truth Table

Introduction

Proofs

- Equivalence
- Proof by Truth Table
- Algebraic substitution

Laws

Using the Laws

Best to have column for each input and results of each operator

Proof by Truth Table

Introduction

Proofs

- Equivalence
- Proof by Truth Table
- Algebraic substitution

Laws

Using the Laws

Best to have column for each input and results of each operator

Prove that $A \oplus B$ is equivalent to $(\overline{A}B) + (A\overline{B})$

Proof by Truth Table

Introduction

Proofs

- Equivalence
- Proof by Truth Table
- Algebraic substitution

Laws

Using the Laws

Best to have column for each input and results of each operator

Prove that $A\oplus B$ is equivalent to $(\overline{A}B)+(A\overline{B})$

A	B	$A \oplus B$	\overline{A}	\overline{B}	$\overline{A}B$	$A\overline{B}$	$(\overline{A}B) + (A\overline{B})$
0	0	0	1	1	0	0	0
0	1	1	1	0	1	0	1
1	0	1	0	1	0	1	1
1	1	0	0	0	0	0	0

Proof by Algebraic Substitution

Introduction

Proofs

- Equivalence
- Proof by Truth Table
- Algebraic substitution

Laws

Using the Laws

 If you are trying to prove that expression 1 is equivalent to expression 2:

- Start with one of the expressions, let's say 1.
- Change it into another expression (say 1') using an *identity* postulate (law).
- \circ Continue the process with 1' until you arrive at 2.
- You must justify every change to the current expression by listing the identity postulate used.
- Some identity postulates: double negation law, identity law, null law, idempotent law, and inverse law

Double Negation Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• $A = \overline{\overline{A}}$

Identity Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: 1A = A

• OR form: 0 + A = A

Null Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: 0A = 0

• OR form: 1 + A = 1

Idempotent Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: AA = A

• OR form: A + A = A

Inverse Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: $A\overline{A} = 0$

• OR form: $A + \overline{A} = 1$

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

Starting with the following expression, find the equivalent expression that uses the least number of gates (has the smallest number of boolean operators) and the least number of inputs

$$(A + \overline{A})(\overline{B}\overline{\overline{B}})$$

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

Starting with the following expression, find the equivalent expression that uses the least number of gates (has the smallest number of boolean operators) and the least number of inputs

$$(A + \overline{A})(\overline{B}\overline{\overline{B}})$$

 Don't know what the final result will be so use algebraic substitution instead of truth tables

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

Starting with the following expression, find the equivalent expression that uses the least number of gates (has the smallest number of boolean operators) and the least number of inputs

$$(A + \overline{A})(\overline{B}\overline{\overline{B}})$$

- Don't know what the final result will be so use algebraic substitution instead of truth tables
- Follow your intuition about what should be the case and what makes sense, then justify with a law.
- In other words, have a plan based on what makes sense.
- Sometimes you need to try things to make the plan.

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

$$(A + \overline{A})(B\overline{\overline{B}})$$

 $(A + \overline{A})(B\overline{B})$ Double Negation Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

$$\begin{array}{ccc}
(A + \overline{A})(B\overline{B}) \\
(A + \overline{A})(BB) \\
(A + \overline{A})\overline{B}
\end{array}$$

Double Negation Law Idempotent Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

$$(A + \overline{A})(B\overline{\overline{B}})$$

$$(A + \overline{A})(BB)$$

$$(A + \overline{A})\overline{B}$$

$$1\overline{B}$$

Double Negation Law Idempotent Law Inverse Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

$$(A + \overline{A})(B\overline{B})$$
 $(A + \overline{A})(BB)$
 $(A + \overline{A})\overline{B}$
 $1\overline{B}$
 \overline{B}

Double Negation Law
Idempotent Law
Inverse Law
Identity Law

Introduction

Proofs

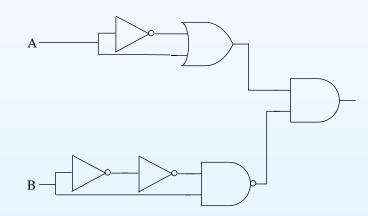
Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

$$egin{array}{ll} (A &+& \overline{A})(B\overline{\overline{B}}) \ (A &+& \overline{A})(BB) \ (A &+& \overline{A})\overline{B} \ \ 1\overline{B} \ \overline{B} \end{array}$$

Double Negation Law
Idempotent Law
Inverse Law
Identity Law



Introduction

Proofs

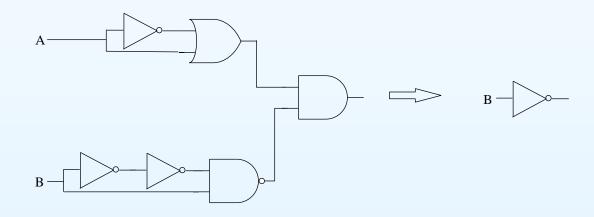
Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

$$egin{array}{ll} (A &+& \overline{A}) (B \overline{\overline{B}}) \ (A &+& \overline{A}) \overline{(BB)} \ (A &+& \overline{A}) \overline{B} \ \hline B \ \overline{B} \end{array}$$

Double Negation Law
Idempotent Law
Inverse Law
Identity Law



Commutative Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: AB = BA

• OR form: A + B = B + A

Associative Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: (AB)C = A(BC)

• OR form: (A + B) + C = A + (B + C)

Distributive Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: A(B + C) = AB + AC

Distributive Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: A(B + C) = AB + AC

• OR form: A + BC = (A + B)(A + C)

Distributive Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

- AND form: A(B + C) = AB + AC
- OR form: A + BC = (A + B)(A + C)
- ...or $A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$

Absorption Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: A(A + B) = A

• OR form: A + AB = A

DeMorgan's Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: $\overline{AB} = \overline{A} + \overline{B}$

• OR form: $\overline{A+B} = \overline{A} \cdot \overline{B}$

DeMorgan's Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

• AND form: $\overline{AB} = \overline{A} + \overline{B}$

• OR form: $\overline{A+B} = \overline{A} \cdot \overline{B}$

Aside: recall that $\overline{AB}=A$ NAND B, and $\overline{A+B}=A$ NOR B

DeMorgan's Law

Introduction

Proofs

Laws

- Double Negation Law
- Identity Law
- Null Law
- Idempotent Law
- Inverse Law
- Example
- Commutative Law
- Associative Law
- Distributive Law
- Absorption Law
- DeMorgan's Law

Using the Laws

 $\bullet \quad \text{AND form: } \overline{AB} \ = \ \overline{A} \ + \ \overline{B}$

• OR form: $\overline{A+B} = \overline{A} \cdot \overline{B}$

Aside: recall that $\overline{AB}=A$ NAND B, and $\overline{A+B}=A$ NOR B NOTE:

$$\overline{AB} \neq \overline{A}\,\overline{B}$$

$$\overline{A+B} \neq \overline{A} + \overline{B}$$

How would you prove DeMorgan's Law?

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

What approach would you use? Why?

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Prove $\overline{A}B + A\overline{B} = (\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

• $(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$Prove \overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$$

- $\bullet \quad \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$
- $(\overline{A}B) + (A\overline{B})$ DeMorgan's Law

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$Prove \overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$$

- $\bullet \quad (\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$
- ullet $(\overline{A}B)+(A\overline{B})$ DeMorgan's Law
- $(\overline{A}B) + \overline{(A\overline{B})}$ Double Negation

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

 $Prove \overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$

- $\bullet \quad (\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$
- ullet $(\overline{A}B)+(A\overline{B})$ DeMorgan's Law
- $\bullet \quad (\overline{\underline{A}}B) + (A\overline{\underline{B}}) \quad \textit{Double Negation}$
- $(\overline{A}B) + (A\overline{B})$ Double Negation

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

 $Prove \overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$

- $\bullet \quad (\overline{\overline{A}B})(\overline{A\overline{B}})$
- $\bullet \quad (\overline{A}B) + (A\overline{B}) \quad \textit{DeMorgan's Law}$
- $(\overline{A}B) + (A\overline{B})$ Double Negation
- $(\overline{A}B) + (A\overline{B})$ Double Negation
- $\overline{A}B + A\overline{B}$ Def. of parentheses/precedence

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Prove $\overline{A}B$	+	$A\overline{B}$	=	$(\overline{\overline{A}B})$	$(\overline{A}\overline{\overline{B}})$
TOVE TID	ı		_	(III)	(11D)

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\operatorname{Prove} \overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{B})}$$

$$\overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$$
 Let $X=(\overline{\overline{A}B}),\ Y=(\overline{A}\overline{\overline{B}})$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$$
 $\overline{X}\overline{Y}$
 $\overline{X} + \overline{Y}$
Let $X = (\overline{\overline{A}B}), \ Y = (\overline{A}\overline{\overline{B}})$
DeMorgan's Law

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\operatorname{Prove} \overline{A}B \ + \ A \overline{B} \ = \ \overline{(\overline{\overline{A}B})(\overline{A}\overline{B})}$$

$$\begin{array}{ll} \overline{(\overline{A}\overline{B})}(\overline{A}\overline{\overline{B}}) \\ \overline{X}\overline{Y} & \text{Let } X = (\overline{\overline{A}}\overline{B}), \ Y = (\overline{A}\overline{\overline{B}}) \\ \overline{X} + \overline{Y} & \text{DeMorgan's Law} \\ \overline{(\overline{\overline{A}}\overline{B})} + \overline{(\overline{A}\overline{\overline{B}})} & \text{Substitution for } X, \ Y \end{array}$$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\operatorname{Prove} \overline{A}B \, + \, A\overline{B} \, = \, \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$$

$$\begin{array}{ll} (\overline{\overline{A}B})(\overline{A}\overline{\overline{B}}) \\ \overline{X}\overline{Y} & \text{Let } X = (\overline{\overline{A}B}), \ Y = (\overline{A}\overline{\overline{B}}) \\ \overline{X} + \overline{Y} & \text{DeMorgan's Law} \\ \overline{(\overline{\overline{A}B})} + \overline{(\overline{A}\overline{\overline{B}})} & \text{Substitution for } X, \ Y \\ (\overline{\overline{A}B}) + \overline{(\overline{A}\overline{\overline{B}})} & \text{Double Negation} \end{array}$$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\operatorname{Prove} \, \overline{A}B \, + \, A \overline{B} \, = \, (\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\operatorname{Prove} \overline{A}B \ + \ A \overline{B} \ = \ \overline{(\overline{\overline{A}B})(\overline{A}\overline{B})}$$

$$\begin{array}{ll} (\overline{A}\overline{B})(\overline{A}\overline{B}) \\ \overline{X}\overline{Y} & Let \ X = (\overline{A}\overline{B}), \ Y = (\overline{A}\overline{B}) \\ \overline{X} + \overline{Y} & DeMorgan's \ Law \\ \overline{(\overline{A}\overline{B})} + \overline{(\overline{A}\overline{B})} & Substitution \ for \ X, \ Y \\ (\overline{A}B) + \overline{(A}\overline{B}) & Double \ Negation \\ (\overline{A}B) + (A\overline{B}) & Double \ Negation \\ \overline{A}B + A\overline{B} & Def. \ of \ parentheses/precedence \\ \end{array}$$

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Prove $\overline{A}B + A\overline{B} = (\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})$

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

• $\overline{A}B + A\overline{B}$

Introduction

Proofs

Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- $\begin{array}{cccc} \bullet & \overline{\overline{A}B + A\overline{B}} \\ \bullet & \overline{\overline{\overline{A}B + A\overline{B}}} & \textit{Double Negation} \end{array}$

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

 $Prove \overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{\overline{B}})}$

- $\overline{A}B + A\overline{B}$
- ullet $\overline{A}B + A\overline{B}$ Double Negation
- ullet $(\overline{\overline{A}}\overline{B})(\overline{A}\overline{\overline{B}})$ DeMorgan's Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

 $\mathsf{Prove}\,ACB\,+\,C(B\,+\,C)\,=\,C$

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Prove ACB + C(B + C) = C

 \bullet ACB + C(B + C)

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- \bullet CB + ACB + C Commutative Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- \bullet CB + ACB + C Commutative Law
- \bullet CB + CBA + C Commutative Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
 Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ullet CB + ACB + C Commutative Law
- ullet CB + CBA + C Commutative Law
- ullet CB + C + CBA Commutative Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
 Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ullet CB + ACB + C Commutative Law
- \bullet CB + CBA + C Commutative Law
- ullet CB + C + CBA Commutative Law
- ullet CB + C Absorption Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
 Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Prove ACB + C(B + C) = C

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ullet CB + ACB + C Commutative Law
- ullet CB + CBA + C Commutative Law
- ullet CB + C + CBA Commutative Law
- ullet CB + C Absorption Law
- ullet C + CB Commutative Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
 Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Prove ACB + C(B + C) = C

- \bullet ACB + C(B + C)
- ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ullet CB + ACB + C Commutative Law
- CB + CBA + C Commutative Law
- ullet CB + C + CBA Commutative Law
- ullet CB + C Absorption Law
- ullet C + CB Commutative Law
- C Absorption Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

$$\bullet$$
 $ACB + C(B + C)$

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- \bullet ABC + CB + 1C Identity Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ABC + CB + 1C Identity Law
- \bullet CAB + CB + C1 Commutative Law, twice

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ABC + CB + 1C Identity Law
- ullet CAB + CB + C1 Commutative Law, twice
- C(AB + B + 1) Distributive Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ABC + CB + 1C Identity Law
- \bullet CAB + CB + C1 Commutative Law, twice
- C(AB + B + 1) Distributive Law
- C(1 + AB + B) Commutative Law, twice

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
 Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ABC + CB + 1C Identity Law
- \bullet CAB + CB + C1 Commutative Law, twice
- C(AB + B + 1) Distributive Law
- C(1 + AB + B) Commutative Law, twice
- C1 Null Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- ABC + CB + 1C Identity Law
- \bullet CAB + CB + C1 Commutative Law, twice
- C(AB + B + 1) Distributive Law
- C(1 + AB + B) Commutative Law, twice
- C1 Null Law
- 1C Commutative Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- \bullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- \bullet ABC + CB + 1C Identity Law
- \bullet CAB + CB + C1 Commutative Law, twice
- C(AB + B + 1) Distributive Law
- C(1 + AB + B) Commutative Law, twice
- C1 Null Law
- 1C Commutative Law
- C Identity Law

Introduction

Proofs

Laws

Using the Laws

- Proving DeMorgan's
- Law
- Proof 1
- Proof 1a
- Proof 1b
- Proof 2
- Proof 3

- \bullet ACB + C(B + C)
- ullet ACB + CB + CC Distributive Law
- ullet ACB + CB + C Idempotent Law
- \bullet ABC + CB + 1C Identity Law
- \bullet CAB + CB + C1 Commutative Law, twice
- C(AB + B + 1) Distributive Law
- C(1 + AB + B) Commutative Law, twice
- C1 Null Law
- 1C Commutative Law
- C Identity Law
 - ⇒ Often more than one way to do proof!

