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COS 140: Foundations of Computer Science

Boolean Algebra

Fall 2018
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• Reading: Chapter 5

• Homework: exercises 1–6

◦ Exercise 7 for extra credit

◦ Due: 1 week + 1 class from today (i.e., 9/21)

• Don’t forget – recitation this week!

• Slides: online now
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• Computers compute digital logic functions

• Need some way to describe those functions

• For some ordinary mathematical functions, algebra works well

• But the functions we want aren’t numeric, but give true/false (1/0)

values

• What can we use?
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• Boolean algebra is analogous to “regular” algebra, but for

true/false values

• Well-known, well-developed mathematical foundation for digital

logic.

• Provides a formalism for specifying the functions that we wish to

have performed.

• Provides a mechanism for proving circuits are equivalent.

• Named for George Boole, a 19th-century mathematician.
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.

• NOT: NOT A, ¬A, A, A′
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.

• NOT: NOT A, ¬A, A, A′

• AND: A AND B, A ·B, AB, A ∧B
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.

• NOT: NOT A, ¬A, A, A′

• AND: A AND B, A ·B, AB, A ∧B

• OR: A OR B, A+B, A ∨B
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.

• NOT: NOT A, ¬A, A, A′

• AND: A AND B, A ·B, AB, A ∧B

• OR: A OR B, A+B, A ∨B

• NAND: A NAND B, A|B, A ↑ B, AB
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.

• NOT: NOT A, ¬A, A, A′

• AND: A AND B, A ·B, AB, A ∧B

• OR: A OR B, A+B, A ∨B

• NAND: A NAND B, A|B, A ↑ B, AB

• NOR: A NOR B, A ↓ B, (A+B)
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Boolean operators correspond to gates and have same truth tables

as corresponding gate.

• NOT: NOT A, ¬A, A, A′

• AND: A AND B, A ·B, AB, A ∧B

• OR: A OR B, A+B, A ∨B

• NAND: A NAND B, A|B, A ↑ B, AB

• NOR: A NOR B, A ↓ B, (A+B)
• XOR: A XOR B, A⊕B
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• What is an expression?

• Value of an expression ⇐ depends on the values of the variables

• Evaluate expression: assign values to variables, performing the

operations

• Can create an expression for a function by determining when the

function should be 1, then writing an expression that is 1 in only

those cases.
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• What is an expression?

• Value of an expression ⇐ depends on the values of the variables

• Evaluate expression: assign values to variables, performing the

operations

• Can create an expression for a function by determining when the

function should be 1, then writing an expression that is 1 in only

those cases.

Example: Create a 3-variable expression that equals 1 when all of

the inputs are 1, or when one, and only one, input is 0.
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• What is an expression?

• Value of an expression ⇐ depends on the values of the variables

• Evaluate expression: assign values to variables, performing the

operations

• Can create an expression for a function by determining when the

function should be 1, then writing an expression that is 1 in only

those cases.

Example: Create a 3-variable expression that equals 1 when all of

the inputs are 1, or when one, and only one, input is 0.

ABC + ABC + ABC + ABC
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• Subexpressions inside of parentheses, beginning with innermost

parentheses.

• NOT

• AND

• OR

• Evaluate A NAND B as NOT(A ∧B) and A NOR B as

NOT(A ∨B)

• Evaluate subexpressions of equal precedence from left to right.
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• Two ways: truth tables and algebraic substitution

• Truth table method: if truth table for expression A same as for

expression B, then A ≡ B

• Algebraic substitution method:

◦ Use laws of Boolean algebra to transform one expression into

the other

◦ Proofs have to be convincing to others

◦ Have to provide enough detail to show how one step follows

from another

◦ Have to provide justification for each step



CS
omputer

cience

Foundations

Proof by Truth Table

Introduction

Proofs

• Equivalence

• Proof by Truth Table

• Algebraic substitution

Laws

Using the Laws

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 28

Best to have column for each input and results of each operator
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Best to have column for each input and results of each operator

Prove that A⊕B is equivalent to (AB) + (AB)
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Best to have column for each input and results of each operator

Prove that A⊕B is equivalent to (AB) + (AB)

A B A⊕B A B AB AB (AB) + (AB)

0 0 0 1 1 0 0 0

0 1 1 1 0 1 0 1

1 0 1 0 1 0 1 1

1 1 0 0 0 0 0 0
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• If you are trying to prove that expression 1 is equivalent to

expression 2:

◦ Start with one of the expressions, let’s say 1.

◦ Change it into another expression (say 1′) using an identity

postulate (law).

◦ Continue the process with 1′ until you arrive at 2.

• You must justify every change to the current expression by listing

the identity postulate used.

• Some identity postulates: double negation law, identity law, null

law, idempotent law, and inverse law
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• A = A
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• AND form: 1A = A

• OR form: 0 + A = A
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• AND form: 0A = 0
• OR form: 1 + A = 1
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• AND form: AA = A

• OR form: A + A = A
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• AND form: AA = 0
• OR form: A + A = 1
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Starting with the following expression, find the equivalent expression

that uses the least number of gates (has the smallest number of

boolean operators) and the least number of inputs

(A + A)(BB)
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Starting with the following expression, find the equivalent expression

that uses the least number of gates (has the smallest number of

boolean operators) and the least number of inputs

(A + A)(BB)

• Don’t know what the final result will be so use algebraic substitution

instead of truth tables



CS
omputer

cience

Foundations

Example: Finding Equivalent Circuits

Introduction

Proofs

Laws

• Double Negation Law

• Identity Law

• Null Law

• Idempotent Law

• Inverse Law

• Example

• Commutative Law

• Associative Law

• Distributive Law

• Absorption Law

• DeMorgan’s Law

Using the Laws

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 28

Starting with the following expression, find the equivalent expression

that uses the least number of gates (has the smallest number of

boolean operators) and the least number of inputs

(A + A)(BB)

• Don’t know what the final result will be so use algebraic substitution

instead of truth tables

• Follow your intuition about what should be the case and what makes

sense, then justify with a law.

• In other words, have a plan based on what makes sense.

• Sometimes you need to try things to make the plan.
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(A + A)(BB)



CS
omputer

cience

Foundations

Example: Finding Equivalent Circuits

Introduction

Proofs

Laws

• Double Negation Law

• Identity Law

• Null Law

• Idempotent Law

• Inverse Law

• Example

• Commutative Law

• Associative Law

• Distributive Law

• Absorption Law

• DeMorgan’s Law

Using the Laws

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 28

(A + A)(BB)

(A + A)(BB) Double Negation Law
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(A + A)(BB)

(A + A)(BB) Double Negation Law

(A + A)B Idempotent Law
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(A + A)(BB)

(A + A)(BB) Double Negation Law

(A + A)B Idempotent Law

1B Inverse Law
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(A + A)(BB)

(A + A)(BB) Double Negation Law

(A + A)B Idempotent Law

1B Inverse Law

B Identity Law
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(A + A)(BB)

(A + A)(BB) Double Negation Law

(A + A)B Idempotent Law

1B Inverse Law

B Identity Law

A

B
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(A + A)(BB)

(A + A)(BB) Double Negation Law

(A + A)B Idempotent Law

1B Inverse Law

B Identity Law

A

B

B
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• AND form: AB = BA

• OR form: A + B = B + A
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• AND form: (AB)C = A(BC)
• OR form: (A + B) + C = A + (B + C)
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• AND form: A(B + C) = AB + AC
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• AND form: A(B + C) = AB + AC

• OR form: A + BC = (A + B)(A + C)
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• AND form: A(B + C) = AB + AC

• OR form: A + BC = (A + B)(A + C)
• ...or A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)
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• AND form: A(A + B) = A

• OR form: A + AB = A
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• AND form: AB = A + B

• OR form: A+B = A ·B



CS
omputer

cience

Foundations

DeMorgan’s Law

Introduction

Proofs

Laws

• Double Negation Law

• Identity Law

• Null Law

• Idempotent Law

• Inverse Law

• Example

• Commutative Law

• Associative Law

• Distributive Law

• Absorption Law

• DeMorgan’s Law

Using the Laws

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 28

• AND form: AB = A + B

• OR form: A+B = A ·B

Aside: recall that AB = A NAND B, and A+B = A NOR B
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• AND form: AB = A + B

• OR form: A+B = A ·B

Aside: recall that AB = A NAND B, and A+B = A NOR B

NOTE:

AB 6= AB

A+B 6= A+B
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What approach would you use? Why?
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Prove AB + AB = (AB)(AB)
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Prove AB + AB = (AB)(AB)

• (AB)(AB)
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Prove AB + AB = (AB)(AB)

• (AB)(AB)

• (AB) + (AB) DeMorgan’s Law
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Prove AB + AB = (AB)(AB)

• (AB)(AB)

• (AB) + (AB) DeMorgan’s Law

• (AB) + (AB) Double Negation
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Prove AB + AB = (AB)(AB)

• (AB)(AB)

• (AB) + (AB) DeMorgan’s Law

• (AB) + (AB) Double Negation

• (AB) + (AB) Double Negation
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Prove AB + AB = (AB)(AB)

• (AB)(AB)

• (AB) + (AB) DeMorgan’s Law

• (AB) + (AB) Double Negation

• (AB) + (AB) Double Negation

• AB +AB Def. of parentheses/precedence
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⇒ Often more than one way to do proof!
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