COS 140: Foundations of Computer Science

Boolean Algebra

Fall 2018

Introduction	3
Problem	3
Boolean algebra	4
Operators	5
Expressions	
Precedence	7
Proofs	8
Equivalence	_
Proof by Truth Table	
Algebraic substitution	
Laws	11
Double Negation Law	
Identity Law	
Null Law	
Idempotent Law	
Inverse Law	
Example	
Commutative Law	
Associative Law	
Distributive Law	
Absorption Law	
DeMorgan's Law	22
Using the Laws	23
Proving DeMorgan's Law	23
Proof 1	24
Proof 1a	25
Proof 1b	
Proof 2	27
Proof 3	

Homework and announcements!				
	 Exercise 7 for extra credit Due: 1 week + 1 class from today (i.e., $9/21$) 			
	Don't forget – recitation this week! Slides: online now			

Copyright © 2002–2018 UMaine Computer Science Department – 2 / 28

Introduction 3 / 28

Problem				
	Computers compute digital logic functions			
	Need some way to describe those functions			
	For some ordinary mathematical functions, algebra works well			
	But the functions we want aren't numeric, but give true/false $(1/0)$ values			
	What can we use?			

Copyright © 2002–2018 UMaine Computer Science Department – 3 / 28

Boolean algebra				
	Boolean algebra is analogous to "regular" algebra, but for true/false values			
	Well-known, well-developed mathematical foundation for digital logic.			
	Provides a formalism for specifying the functions that we wish to have performed.			
	Provides a mechanism for proving circuits are equivalent.			
	Named for George Boole, a 19^{th} -century mathematician.			

Copyright © 2002–2018 UMaine Computer Science Department – 4 / 28

Operators

Boolean operators correspond to gates and have same truth tables as corresponding gate.

- \square NOT: NOT $A, \neg A, \overline{A}, A'$
- $\quad \ \Box \quad \mathsf{AND} \colon A \ \mathsf{AND} \ B, \ A \cdot B, \ AB, \ A \wedge B$
- $\quad \ \ \, \Box \quad \mathsf{OR} \colon A \; \mathsf{OR} \; B, \; A+B, \; A \vee B$
- □ NAND: A NAND B, A | B, $A \uparrow B$, \overline{AB} □ NOR: A NOR B, $A \downarrow B$, $\overline{(A+B)}$
- $\quad \Box \quad \mathsf{XOR} \colon A \; \mathsf{XOR} \; B, \; A \oplus B$

Copyright © 2002–2018 UMaine Computer Science Department – 5 / 28

Во	Boolean Algebra Expressions				
	What is an <i>expression</i> ? Value of an expression ← depends on the values of the variables Evaluate expression: assign values to variables, performing the operations				
	Can create an expression for a function by determining when the function should be 1, then writing an expression that is 1 in only those cases.				
Exa	ample: Create a 3-variable expression that equals 1 when all of the inputs are 1, or when one, and only one, input is 0.				

Copyright © 2002–2018 UMaine Computer Science Department – 6 / 28

Operator Precedence for Boolean Algebra				
	Subexpressions inside of parentheses, beginning with innermost parentheses.			
	NOT			
	AND			
	OR			
	Evaluate A NAND B as $NOT(A \wedge B)$ and A NOR B as $NOT(A \vee B)$			
	Evaluate subexpressions of equal precedence from left to right.			

Copyright © 2002–2018 UMaine Computer Science Department – 7 / 28

Proofs of Equivalence

- ☐ Two ways: truth tables and algebraic substitution
- \square Truth table method: if truth table for expression A same as for expression B, then $A \equiv B$
- ☐ Algebraic substitution method:
 - Use laws of Boolean algebra to transform one expression into the other
 - Proofs have to be convincing to others
 - Have to provide enough detail to show how one step follows from another
 - Have to provide justification for each step

Copyright © 2002–2018 UMaine Computer Science Department – 8 / 28

Proof by Truth Table

Best to have column for each input and results of each operator

Prove that $A \oplus B$ is equivalent to $(\overline{A}B) + (A\overline{B})$

A	B	$A \oplus B$	\overline{A}	\overline{B}	$\overline{A}B$	$A\overline{B}$	$(\overline{A}B) + (A\overline{B})$
0	0	0	1	1	0	0	0
0	1	1	1	0	1	0	1
1	0	1	0	1	0	1	1
1	1	0	0	0	0	0	0

Copyright © 2002–2018 UMaine Computer Science Department – 9 / 28

Pr	Proof by Algebraic Substitution				
	If you are trying to prove that expression 1 is equivalent to expression 2:				
	 Start with one of the expressions, let's say 1. Change it into another expression (say 1') using an <i>identity postulate</i> (law). Continue the process with 1' until you arrive at 2. 				

Copyright © 2002–2018 UMaine Computer Science Department – 10 / 28

Laws 11 / 28

Double Negation Law

 $\Box \quad A \ = \ \overline{\overline{A}}$

Copyright © 2002–2018 UMaine Computer Science Department – $11\ /\ 28$

Identity Law

 $\begin{array}{lll} \square & \mathsf{AND} \; \mathsf{form:} \; 1A \; = \; A \\ \square & \mathsf{OR} \; \mathsf{form:} \; 0 \; + \; A \; = \; A \end{array}$

Copyright © 2002–2018 UMaine Computer Science Department – 12 / 28

Null Law

 $\hfill\Box$ AND form: $0A\ =\ 0$

 $\hfill\Box$ OR form: $1\,+\,A\,=\,1$

Copyright © 2002–2018 UMaine Computer Science Department – 13 / 28

Idempotent Law

 \Box AND form: AA = A \Box OR form: A + A = A

Copyright © 2002–2018 UMaine Computer Science Department – 14 / 28

Inverse Law

 $\begin{array}{lll} \square & {\rm AND\ form:}\ A\overline{A}\ =\ 0 \\ \square & {\rm OR\ form:}\ A\ +\ \overline{A}\ =\ 1 \end{array}$

Copyright © 2002–2018 UMaine Computer Science Department – 15 / 28

Example: Finding Equivalent Circuits

Starting with the following expression, find the equivalent expression that uses the least number of gates (has the smallest number of boolean operators) and the least number of inputs

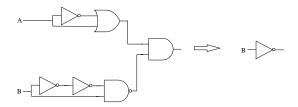
$$(A + \overline{A})\overline{(B\overline{\overline{B}})}$$

- □ Don't know what the final result will be so use algebraic substitution instead of truth tables
- ☐ Follow your intuition about what should be the case and what makes sense, then justify with a law.
- ☐ In other words, have a plan based on what makes sense.
- ☐ Sometimes you need to try things to make the plan.

Copyright © 2002–2018 UMaine Computer Science Department – 16 / 28

Example: Finding Equivalent Circuits

$$\begin{array}{r}
(A + \overline{A})(B\overline{B}) \\
(A + \overline{A})(BB) \\
(A + \overline{A})\overline{B} \\
1\overline{B} \\
\overline{B}
\end{array}$$



Copyright © 2002–2018 UMaine Computer Science Department – 17 / 28

Commutative Law

- \square AND form: AB = BA
- \Box OR form: A + B = B + A

Copyright © 2002–2018 UMaine Computer Science Department – 18 / 28

Associative Law

- $\ \ \square \ \ \ \mathsf{AND} \ \ \mathsf{form} \colon \ (AB)C \ = \ A(BC)$
- $\Box \quad \mathsf{OR} \; \mathsf{form} \colon (A \; + \; B) \; + \; C \; = \; A \; + \; (B \; + \; C)$

Copyright © 2002–2018 UMaine Computer Science Department – 19 / 28

Distributive Law

- \Box AND form: A(B + C) = AB + AC
- \Box OR form: A + BC = (A + B)(A + C)
- $\square \quad ... \text{or } A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$

Copyright © 2002–2018 UMaine Computer Science Department – 20 / 28

Absorption Law

- \square AND form: A(A + B) = A
- \Box OR form: A + AB = A

Copyright © 2002–2018 UMaine Computer Science Department – 21 / 28

DeMorgan's Law

Aside: recall that $\overline{AB}=A$ ${\rm NAND}\ B$, and $\overline{A+B}=A$ ${\rm NOR}\ B$

NOTE:

 $\overline{AB} \neq \overline{A}\,\overline{B}$

 $\overline{A+B} \neq \overline{A} + \overline{B}$

Copyright © 2002–2018 UMaine Computer Science Department – 22 / 28

Using the Laws 23 / 28

How would you prove DeMorgan's Law?

What approach would you use? Why?

Copyright © 2002–2018 UMaine Computer Science Department – 23 / 28

Example: Proof by Algebraic Substitution

Prove
$$\overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{B})}$$

 $\Box \quad \frac{(\overline{A}B)(A\overline{B})}{(\overline{A}B) + (\overline{A}\overline{B})}$

DeMorgan's Law

 \Box $(\overline{A}B) + \overline{(\overline{A}\overline{B})}$

Double Negation

 \Box $(\overline{A}B) + (A\overline{B})$

Double Negation

 $\Box \quad \overline{A}B + A\overline{B}$

Def. of parentheses/precedence

Copyright © 2002–2018 UMaine Computer Science Department – 24 / 28 $\,$

Example: Proof by Algebraic Substitution

$$\overline{(\overline{A}\overline{B})(\overline{A}\overline{B})}$$

$$\overline{XY} \qquad Let \ X = (\overline{\overline{A}B}), \ Y = (\overline{A}\overline{B})$$

$$\overline{XY} \qquad DeMorgan's \ Law$$

$$\overline{(\overline{A}B) + (\overline{A}\overline{B})} \qquad Substitution \ for \ X, \ Y$$

$$\overline{(\overline{A}B) + (\overline{A}\overline{B})} \qquad Double \ Negation$$

Copyright © 2002–2018 UMaine Computer Science Department – 25 / 28

Example: Proof by Algebraic Substitution

Prove
$$\overline{A}B + A\overline{B} = \overline{(\overline{\overline{A}B})(\overline{A}\overline{B})}$$

- $\Box \quad \overline{A}B + A\overline{B}$
- \Box $\overline{\overline{A}B + A\overline{B}}$ Double Negation
- $\Box \quad (\overline{A}B)(A\overline{B}) \quad \textit{DeMorgan's Law}$

Copyright © 2002–2018 UMaine Computer Science Department – 26 / 28

Example: Another Proof by Algebraic Substitution

Prove ACB + C(B + C) = C

- \Box ACB + C(B + C)
- $\ \square \ ACB + CB + CC \ Distributive Law$
- \square ACB + CB + C Idempotent Law
- $\ \square \ CB \ + \ ACB \ + \ C \quad \textit{Commutative Law}$
- $\ \square \ CB + CBA + C \ Commutative Law$
- $\ \square \ CB + C + CBA$ Commutative Law
- $\ \square \ CB + C \ Absorption \ Law$
- \Box C + CB Commutative Law
- \Box C Absorption Law

Copyright © 2002–2018 UMaine Computer Science Department – 27 / 28

Example: Another Proof by Algebraic Substitution

Alternate proof of ACB + C(B + C) = C

- \Box ACB + C(B + C)
- \square ACB + CB + CC Distributive Law
- $\ \square \ ACB + CB + C \ Idempotent \ Law$
- \square ABC + CB + 1C Identity Law
- \Box CAB + CB + C1 Commutative Law, twice
- $\ \ \square \quad C(AB+B+1) \quad \textit{ Distributive Law}$
- \Box C(1+AB+B) Commutative Law, twice
- $\ \square \ C1 \ \ \textit{Null Law}$
- \square 1C Commutative Law
- □ C Identity Law

 \Rightarrow Often more than one way to do proof!

Copyright © 2002–2018 UMaine Computer Science Department – 28 / 28