COS 140: Foundations of Computer Science

ALOHA Network Protocol Family

Fall 2018

Homework

Homework

Introduction

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

Carrier Sense Protocols

• Reading: Chapter 24 online

• Homework: end of Chapter 24, due 11/26

Network Protocols

Introduction

- Network Protocols
- Problem
- Ethernet
- ALOHA Protocols

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

- *Protocol:* Set of rules that are followed to achieve some goal or to govern some interaction
- Network protocols: Followed by computers to allow intercommunication
 - ALOHA protocols: one of the earliest network protocols
- Descendants include the Ethernet protocol

The Problem

Introduction

- Network Protocols
- Problem
- Ethernet
- ALOHA Protocols

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

- For local area networks (LANs), how do we connect the computers so that:
 - it is simple;
 - the communication channel is utilized efficiently;
 - necessary equipment is kept to a minimum; and
 - it is easy to add new computers without disrupting the LAN.

A solution: The Ethernet

Introduction

- Network Protocols
- Problem
- Ethernet
- ALOHA Protocols

ALOHA Basics

ALOHA

Pure Aloha

- Slotted ALOHA
- Carrier Sense Protocols

- Most modern LANs use a bus architecture to solve the problem
 Benefits:
 - Little or no equipment other than the network cards themselves
 - Easy to add/delete computers
 - High speed
- Ethernet is the most commonly-used LAN protocol
 - Invented by Bob Metcalfe
 - Relatively simple
 - Capable of very high speeds (up to 100 Gbps)

ALOHA Protocols

Introduction

- Network Protocols
- Problem
- Ethernet
- ALOHA Protocols

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

- Ethernet is a descendant of one of the earliest LAN-like protocols, ALOHA
- One of the earliest, most successful *dynamic channel allocation methods*:
 - Addressed problem of allocating communication channel among set of transmitters/receivers
 - Also called *medium access control* (MAC) techniques
 - Also: multiple access (broadcast), rather than a point-to-point link
- Originally from packet radio; works well for satellite transmissions.
- Simpler than Ethernet so a good place to start

ALOHA station model

Introduction

- **ALOHA Basics**
- Stations
- Channels
- Time
- Carrier sense
- Channel allocation
- ALOHA
- Pure Aloha
- Slotted ALOHA
- **Carrier Sense Protocols**

- Stations are independent computers (or terminals) used by users (now: hosts or nodes)
- Software on the stations generate *frames* (packets) for transmission
- The station sends the frame and blocks until it has been successfully transmitted

ALOHA channel model

Introduction

- **ALOHA Basics**
- Stations
- Channels
- Time
- Carrier sense
- Channel allocation
- ALOHA
- Pure Aloha
- Slotted ALOHA
- **Carrier Sense Protocols**

- There is only one channel all stations use this channel
- More than one frame is transmitted at the same time \longrightarrow *collision*
- All stations can detect collisions (some variants of model)
 - In broadcast systems: listen to channel output if not the same as sent \Rightarrow collision
 - Also, if detect signal other than yours on the channel during frame transmission \Rightarrow collision
- Assume no additional channel available for arbitration
- Assume the channel is error-free, except for collisions

ALOHA time models

Introduction

ALOHA Basics

- Stations
- Channels
- Time
- Carrier sense
- Channel allocation

ALOHA

Pure Aloha

Slotted ALOHA

- *Continuous time*: transmission can begin at any time
 - *Slotted time*: time is divided into discrete slots, and transmissions begin at the start of a slot

Sensing the carrier

Introduction

- **ALOHA Basics**
- Stations
- Channels
- Time
- Carrier sense
- Channel allocation

ALOHA

Pure Aloha

Slotted ALOHA

- In telecommunications, a basic waveform, the *carrier*, is modulated to encode the information
- *Carrier sense*: stations check to see if the channel is being used
 - don't attempt to use it until it becomes idle
- No carrier sense: stations do not check if the channel is busy before using it

Static vs. dynamic channel allocation

Introduction

- **ALOHA Basics**
- Stations
- Channels
- Time
- Carrier sense
- Channel allocation

ALOHA

Pure Aloha

Slotted ALOHA

- *Static channel allocation*: make a decision on how to allocate the channel and stick with it
- Dynamic channel allocation: channel allocation can change as needed
- Static is simpler, but dynamic is more responsive to changing needs

Example: Static allocation methods

Introduction

- **ALOHA Basics**
- Stations
- Channels
- Time
- Carrier sense
- Channel allocation
- ALOHA
- Pure Aloha
- Slotted ALOHA
- **Carrier Sense Protocols**

- Frequency-division multiplexing (FDM):
 - Used (e.g.) for allocating telephone trunk lines
 - $\circ~$ If have n nodes, give each its own 1/n section of the frequency bandwidth
- Time-division multiplexing (TDM):
 - Also used for some telephone trunks, some network mechanisms (slotted ALOHA, e.g.)
 - Divide time into *frames*, divide frames into *slots*
 - Within each frame, a node has a slot it can use
 - Node has entire bandwidth during its slot
- Problems for computer networks: have *bursty* traffic and a changing number of users

The ALOHA System

Introduction

ALOHA Basics

- ALOHA
- The system
- Collision detection

Pure Aloha

Slotted ALOHA

- Created to link campuses of the University of Hawaii on different islands
- Central computer also connected to ARPANET and PACNET
- Not truly a broadcast system communication from a station to a central computer or from the central computer to a station but shared spectrum, so same problems as broadcast
- Not truly a LAN (clearly not in the same building) but used LAN technology to create a metropolitan area network (MAN)
- Computers connected by radio two bands in UHF part of spectrum.

Collision detection in the ALOHA system

Introduction

ALOHA Basics

ALOHA

• The system

Collision detection

Pure Aloha

Slotted ALOHA

- One radio band used for communication from stations there can be collisions on this band
- One band is used for communication from the central computer
- The central computer sends an ACK for messages it correctly receives
- If an ACK is not received by the station in some period of time, it assumes a collision has occurred
- Stations do not sense channel for communication to the central computer.
- Researchers later thought one channel would be better.

Pure ALOHA protocol

Introduction

- **ALOHA Basics**
- ALOHA
- Pure Aloha
- The protocol
- Random backoff
- Efficiency
- Slotted ALOHA
- **Carrier Sense Protocols**

- A station sends a message whenever it has one to send
 - If the transmission was successful, done
- If there is no ACK after some period of time, assume collision and retransmit
 - Propagation delay
 - How long to wait?
 - When to retransmit?

Random backoff

Introduction

ALOHA Basics

ALOHA

- Pure Aloha
- The protocol
- Random backoff
- Efficiency
- Slotted ALOHA
- **Carrier Sense Protocols**

- Backoff: time to wait before retransmitting
 - ALOHA used random backoff why?
 - Which probability distribution to use?
- *Binary exponential backoff:* retransmit, but each time there's a collision, double the average time of the delay

Efficiency of pure ALOHA

- **ALOHA Basics**
- ALOHA
- Pure Aloha
- The protocol
- Random backoff
- Efficiency

omputer Science

Slotted ALOHA

- If even one bit of overlap \longrightarrow retransmit frame
 - Assume frames are all the same size and take the same amount of time t to send.
- A frame can cause collisions for time a little under 3t:

- If rate of sending is same for all users, the best channel utilization is about 18%.
- If users have different rates of use, throughput higher because communication can be bursty – all users not trying to send at the same time.

Slotted ALOHA

Introduction

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

- Attempt to improve pure ALOHA.
- Divide channel into uniform *slots*, each of which is size of frame transmission time
- Frames can only be sent at the beginning of a slot need clock sync
- Now, when there's a collision, frames completely overlap wasted channel time = t, not 3t
- Better throughput than pure ALOHA: ~37%

Carrier sense protocols

Introduction

- **ALOHA Basics**
- ALOHA
- Pure Aloha
- Slotted ALOHA

- Propagation delay
- 1-Persistent CSMA
- p-Persistent CSMA
- Nonpersistent CSMA
- CSMA with Collision
- Detection (CSMA/CD)
- Ethernet

- Problem with pure ALOHA: poor channel utilization
 - Can do better if can sense the medium to determine if busy
- *Carrier sense protocols*: like pure ALOHA, but can detect if carrier in use before transmitting
- E.g., carrier sense multiple access (CSMA)

Propagation delay (again)

Introduction

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

Carrier Sense Protocols

- Propagation delay
- 1-Persistent CSMA
- \bullet *p*-Persistent CSMA
- Nonpersistent CSMA

• CSMA with Collision Detection (CSMA/CD)

• Ethernet

- Takes a finite amount of time to send signal from one place to another: the *propagation delay*
- Propagation in most media roughly the speed of light (approx. 3×10^8 m/s)
- Propagation delay roughly 1 ns/foot
 - Negligible for most LANs (order of 1 μ s)
 - For WAN, can be considerable: ms to tenths of seconds
- Determines how long from time a station begins transmitting until another detects it
- Longer propagation delay \rightarrow increased probability of collisions

1-Persistent CSMA

Introduction

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

- Propagation delay
- 1-Persistent CSMA
- p-Persistent CSMA
- Nonpersistent CSMA
- CSMA with Collision Detection (CSMA/CD)
- Ethernet

- The "1" refers to probability that station will transmit when channel is free, so:
 - If channel free, transmit
 - If channel busy, wait transmit as soon as sense the channel free
- Collisions can occur:
 - due to propagation delays
 - when several stations, which are waiting, all transmit when channel becomes free

p-Persistent CSMA

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

Carrier Sense Protocols

- Propagation delay
- 1-Persistent CSMA
- p-Persistent CSMA
- Nonpersistent CSMA
- CSMA with Collision
- Detection (CSMA/CD)
- Ethernet

omputer Science

oundations

Nonpersistent CSMA

Introduction

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

Carrier Sense Protocols

- Propagation delay
- 1-Persistent CSMA
- p-Persistent CSMA
- Nonpersistent CSMA

• CSMA with Collision Detection (CSMA/CD)

Ethernet

- If channel is busy: wait a random time before trying again.
 - Reduces collisions because reduce likelihood that waiting stations will collide when channel becomes idle.

CSMA with Collision Detection (CSMA/CD)

• CSMA with Collision Detection (CSMA/CD)

• Ethernet

omputer Science

- Stop transmitting as soon collision detected
- Increases useful bandwidth by reducing the time wasted sending pieces of frames that have been ruined by collisions.
- Efficiency depends on propagation time (must wait for information about collision to propagate back to sender).

Ethernet

Introduction

ALOHA Basics

ALOHA

Pure Aloha

Slotted ALOHA

- Carrier Sense Protocols
- Propagation delay
- 1-Persistent CSMA
- $\bullet \ p\text{-} \text{Persistent CSMA}$
- Nonpersistent CSMA
- CSMA with Collision Detection (CSMA/CD)
- Ethernet

- CSMA/CD, IEEE 802.3
- Comprises bottom layers of OSI reference model:
 - Data link: MAC-client, Media Access (MAC) layers
 - Physical: Physical (media-specific)
- Many forms: 10Base-T 100Base-T2 (Fast Ethernet), 1000Base-LX (Gigabit Ethernet), ...
- Frame:

Preamble	Start-of-frame	Dest.	Source	Length/Type	Data+Pad	Check codes
----------	----------------	-------	--------	-------------	----------	-------------

- Clock synchronization via pattern of bits in frame's preamble
- Star topology (with switches) vs bus topology (with bridges)
- Full-duplex vs. half-duplex

