COS 140: Foundations of Computer Science

ALOHA Network Protocol Family

Fall 2018

Homework	:	2
Introduction	•	3
Network Protocols		3
Problem		
Ethernet		
ALOHA Protocols		
ALOHA Basics		7
Stations		7
Channels		
Time		
Carrier sense		
Channel allocation.		
ALOHA 13		
The system	1	3
Collision detection	1	4
Pure Aloha	1!	_
The protocol		
Random backoff		
Efficiency	1	7
Slotted ALOHA	18	8
Carrier Sense Protocols	19	n
Propagation delay		_
,		
1-Persistent CSMA		
p-Persistent CSMA		
Nonpersistent CSMA		
CSMA with Collision Detection (CSMA/CD)		
Ethernet	2	5

 ${\color{red}{\sf Homework}} \\ 2 \ / \ 25 \\$

Ho	Homework	
	Reading: Chapter 24 online Homework: end of Chapter 24, due $11/26$	

Copyright © 2002–2018 UMaine Computer Science Department – 2 / 25

Introduction 3 / 25

Network Protocols	
	Protocol: Set of rules that are followed to achieve some goal or to govern some interaction
	Network protocols: Followed by computers to allow intercommunication
	ALOHA protocols: one of the earliest network protocols
	Descendants include the Ethernet protocol

Copyright © 2002–2018 UMaine Computer Science Department – 3 / 25

The Problem ☐ For local area networks (LANs), how do we connect the computers so that: ☐ it is simple; ☐ the communication channel is utilized efficiently; ☐ necessary equipment is kept to a minimum; and ☐ it is easy to add new computers without disrupting the LAN.

Copyright © 2002–2018 UMaine Computer Science Department – 4 / 25

A solution: The Ethernet

- $\hfill \square$ Most modern LANs use a bus architecture to solve the problem
- ☐ Benefits:
 - Little or no equipment other than the network cards themselves
 - Easy to add/delete computers
 - High speed
- ☐ Ethernet is the most commonly-used LAN protocol
 - Invented by Bob Metcalfe
 - Relatively simple
 - Capable of very high speeds (up to 100 Gbps)

Copyright © 2002–2018 UMaine Computer Science Department – 5 / 25

AL	ALOHA Protocols		
	Ethernet is a descendant of one of the earliest LAN-like protocols, ALOHA One of the earliest, most successful <i>dynamic channel allocation methods</i> :		
	 Addressed problem of allocating communication channel among set of transmitters/receivers Also called <i>medium access control</i> (MAC) techniques Also: multiple access (broadcast), rather than a point-to-point link 		
	Originally from packet radio; works well for satellite transmissions. Simpler than Ethernet – so a good place to start		

Copyright © 2002–2018 UMaine Computer Science Department – 6 / 25

ALOHA Basics 7 / 25

ALOHA station model

- riangle Stations are independent computers (or terminals) used by users (now: hosts or nodes)
- □ Software on the stations generate *frames* (packets) for transmission
- $\ \square$ The station sends the frame and blocks until it has been successfully transmitted

Copyright © 2002–2018 UMaine Computer Science Department – 7 / 25

ΑL	ALOHA channel model	
	There is only one channel – all stations use this channel More than one frame is transmitted at the same time \longrightarrow collision All stations can detect collisions (some variants of model)	
	 In broadcast systems: listen to channel output – if not the same as sent ⇒ collision Also, if detect signal other than yours on the channel during frame transmission ⇒ collision 	
	Assume no additional channel available for arbitration Assume the channel is error-free, except for collisions	

Copyright © 2002–2018 UMaine Computer Science Department – 8 / 25

ALOHA time models

- $\ \square$ Continuous time: transmission can begin at any time
- \Box Slotted time: time is divided into discrete slots, and transmissions begin at the start of a slot

Copyright © 2002–2018 UMaine Computer Science Department – 9 / 25

Sensing the carrier		
	In telecommunications, a basic waveform, the <i>carrier</i> , is <i>modulated</i> to encode the information <i>Carrier sense</i> : stations check to see if the channel is being used – don't attempt to use it until it becomes idle	
	No carrier sense: stations do not check if the channel is busy before using it	

Copyright © 2002–2018 UMaine Computer Science Department – $10\ /\ 25$

Static vs. dynamic channel allocation

- □ Static channel allocation: make a decision on how to allocate the channel and stick with it
- □ Dynamic channel allocation: channel allocation can change as needed
- □ Static is simpler, but dynamic is more responsive to changing needs

Copyright © 2002–2018 UMaine Computer Science Department – 11 / 25

Ex	Example: Static allocation methods	
	Frequency-division multiplexing (FDM):	
	- Used (e.g.) for allocating telephone trunk lines - If have n nodes, give each its own $1/n$ section of the frequency bandwidth	
	Time-division multiplexing (TDM):	
	 Also used for some telephone trunks, some network mechanisms (slotted ALOHA, e.g.) Divide time into <i>frames</i>, divide frames into <i>slots</i> Within each frame, a node has a slot it can use Node has entire bandwidth during its slot 	
	Problems for computer networks: have bursty traffic and a changing number of users	

Copyright © 2002–2018 UMaine Computer Science Department – 12 / 25

ALOHA 13 / 25

The ALOHA System	
	Created to link campuses of the University of Hawaii – on different islands
	Central computer also connected to ARPANET and PACNET
	Not truly a broadcast system – communication from a station to a central computer or from the
	central computer to a station – but shared spectrum, so same problems as broadcast
	Not truly a LAN (clearly not in the same building) – but used LAN technology to create a
	metropolitan area network (MAN)
	Computers connected by radio - two bands in UHF part of spectrum.

Copyright © 2002–2018 UMaine Computer Science Department – 13 / 25

Collision detection in the ALOHA system		
	One radio band used for communication from stations – there can be collisions on this band	
	One band is used for communication from the central computer	
	The central computer sends an ACK for messages it correctly receives	
	If an ACK is not received by the station in some period of time, it assumes a collision has occurred	
	Stations do not sense channel for communication to the central computer.	
	Researchers later thought one channel would be better.	

Copyright © 2002–2018 UMaine Computer Science Department - 14 / 25

Pure Aloha 15 / 25

Pure ALOHA protocol

- $\hfill\Box$ A station sends a message whenever it has one to send
- ☐ If the transmission was successful, done
- ☐ If there is no ACK after some period of time, assume collision and retransmit
 - Propagation delay
 - How long to wait?
 - When to retransmit?

Copyright © 2002–2018 UMaine Computer Science Department – 15 / 25

Random backoff □ Backoff: time to wait before retransmitting □ ALOHA used random backoff – why? □ Which probability distribution to use? □ Binary exponential backoff: retransmit, but each time there's a collision, double the average time of the delay

Copyright © 2002–2018 UMaine Computer Science Department – 16 / 25

Efficiency of pure ALOHA ☐ If even one bit of overlap → retransmit frame ☐ Assume frames are all the same size and take the same amount of time t to send. ☐ A frame can cause collisions for time a little under 3t: frame begins leaving transmitter wasted bandwidth due to collision ☐ If rate of sending is same for all users, the best channel utilization is about 18%. ☐ If users have different rates of use, throughput higher because communication can be bursty — all users not trying to send at the same time.

Copyright © 2002–2018 UMaine Computer Science Department – 17 / 25

Slotted ALOHA 18 / 25

Slotted ALOHA		
	Attempt to improve pure ALOHA.	
	Divide channel into uniform slots, each of which is size of frame transmission time	
	Frames can only be sent at the beginning of a slot – need clock sync	
	Now, when there's a collision, frames completely overlap — wasted channel time $=t$, not $3t$	
	Better throughput than pure ALOHA: ~37%	

Copyright © 2002–2018 UMaine Computer Science Department – 18 / 25

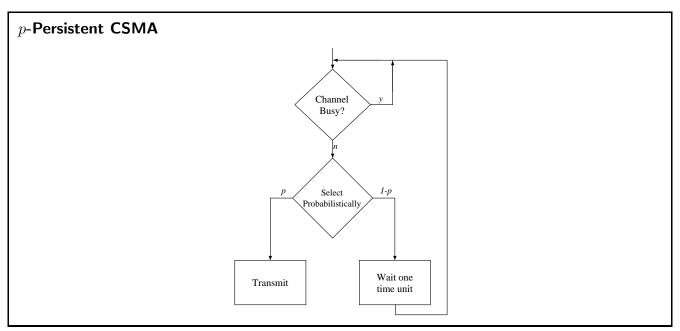
Carrier Sense Protocols

19 / 25

Carrier sense protocols

- □ Problem with pure ALOHA: poor channel utilization
- ☐ Can do better if can sense the medium to determine if busy
- ☐ Carrier sense protocols: like pure ALOHA, but can detect if carrier in use before transmitting
- ☐ E.g., carrier sense multiple access (CSMA)

Copyright © 2002–2018 UMaine Computer Science Department – 19 / 25

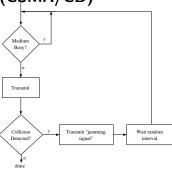

Propagation delay (again)		
	Takes a finite amount of time to send signal from one place to another: the <i>propagation delay</i> Propagation in most media roughly the speed of light (approx. 3×10^8 m/s) Propagation delay roughly 1 ns/foot	
	 Negligible for most LANs (order of 1 μs) For WAN, can be considerable: ms to tenths of seconds 	
	Determines how long from time a station begins transmitting until another detects it Longer propagation delay \to increased probability of collisions	

Copyright © 2002–2018 UMaine Computer Science Department – 20 / 25

1-Persistent CSMA

- $\hfill\Box$ The "1" refers to probability that station will transmit when channel is free, so:
 - If channel free, transmit
 - If channel busy, wait transmit as soon as sense the channel free
- □ Collisions can occur:
 - due to propagation delays
 - when several stations, which are waiting, all transmit when channel becomes free

Copyright © 2002–2018 UMaine Computer Science Department – 21 / 25


Copyright © 2002–2018 UMaine Computer Science Department – 22 / 25

Nonpersistent CSMA

- ☐ If channel is busy: wait a random time before trying again.
- □ Reduces collisions because reduce likelihood that waiting stations will collide when channel becomes idle.

Copyright © 2002–2018 UMaine Computer Science Department – 23 / 25

CSMA with Collision Detection (CSMA/CD)

- ☐ Stop transmitting as soon collision detected
- □ Increases useful bandwidth by reducing the time wasted sending pieces of frames that have been ruined by collisions.
- ☐ Efficiency depends on propagation time (must wait for information about collision to propagate back to sender).

Copyright © 2002–2018 UMaine Computer Science Department – 24 / 25

Ethernet

- □ CSMA/CD, IEEE 802.3
- ☐ Comprises bottom layers of OSI reference model:
 - Data link: MAC-client, Media Access (MAC) layers
 - Physical: Physical (media-specific)
- □ Many forms: 10Base-T 100Base-T2 (Fast Ethernet), 1000Base-LX (Gigabit Ethernet), ...
- Frame: Preamble | Start-of-frame | Dest. | Source | Length/Type | Data+Pad | Check codes |
- □ Clock synchronization via pattern of bits in frame's preamble
- ☐ Star topology (with switches) vs bus topology (with bridges)
- ☐ Full-duplex vs. half-duplex

Copyright © 2002–2018 UMaine Computer Science Department – 25 / 25