
CS
omputer

cience

Foundations

Homework

Adders

Binary Numbers

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 1 / 29

• Reading: Chapter 8

• Exercises: Chapter 8, all

• Due Friday, 9/28

CS
omputer

cience

Foundations

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 2 / 29

COS 140: Foundations of Computer Science

Adders

Fall 2018

CS
omputer

cience

Foundations

What is an adder?

Adders

• What is an adder?

• Why Study Adders?

• How Do We Do

Addition?

Binary Numbers

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 29

• An adder is a logic circuit that adds binary numbers

• Could add two 1-digit numbers or two n-bit numbers

CS
omputer

cience

Foundations

Why Study Adders?

Adders

• What is an adder?

• Why Study Adders?

• How Do We Do

Addition?

Binary Numbers

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 29

• Interesting example of a combinational circuit.

◦ Circuit whose output relies solely on its inputs.

◦ Perform an important function for the computer.

• Addition is also basis for other arithmetic functions in the

computer (subtraction, multiplication, etc.)

• Would like the function done in hardware so it is done

quickly.

CS
omputer

cience

Foundations

How Do We Do Addition?

Adders

• What is an adder?

• Why Study Adders?

• How Do We Do

Addition?

Binary Numbers

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 29

1. Write down numbers that will be added using symbols from 0 to

9.

2. Use arithmetic facts to add numbers in a column. If more than 9,

carry the most significant digit to the next column.

CS
omputer

cience

Foundations

How Do We Do Addition?

Adders

• What is an adder?

• Why Study Adders?

• How Do We Do

Addition?

Binary Numbers

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 29

1. Write down numbers that will be added using symbols from 0 to

9.

2. Use arithmetic facts to add numbers in a column. If more than 9,

carry the most significant digit to the next column.

1

3 5 6

+ 2 3 5

5 9 1

CS
omputer

cience

Foundations

Numbers and Digital Logic

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 29

• Symbols will correspond to the 0 or 1 that is the input or output of

the circuit. So, have 2 symbols to work with, not 10.

• Create a binary system that is like our digital system.

CS
omputer

cience

Foundations

A Closer Look at Our Digital System

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 29

• Have 10 digits: 0–9

• Have “places” for 1’s, 10’s, 100’s, 1000’s, 10,000’s, etc. that

correspond to powers of 10.

CS
omputer

cience

Foundations

A Closer Look at Our Digital System

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 29

• Have 10 digits: 0–9

• Have “places” for 1’s, 10’s, 100’s, 1000’s, 10,000’s, etc. that

correspond to powers of 10.

◦ 100 = 1; 101 = 10; 102 = 100; 103 = 1000; 104 =
10, 000

• To find the value of a number, add all the digits times their place

values.

CS
omputer

cience

Foundations

A Closer Look at Our Digital System

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 29

• Have 10 digits: 0–9

• Have “places” for 1’s, 10’s, 100’s, 1000’s, 10,000’s, etc. that

correspond to powers of 10.

◦ 100 = 1; 101 = 10; 102 = 100; 103 = 1000; 104 =
10, 000

• To find the value of a number, add all the digits times their place

values.

◦ 359 = 9× 1 + 5× 10 + 3× 100

CS
omputer

cience

Foundations

In a Binary System...

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 29

• Have 2 digits: 0 and 1

• Places correspond to powers of 2

CS
omputer

cience

Foundations

In a Binary System...

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 29

• Have 2 digits: 0 and 1

• Places correspond to powers of 2:

20 1 24 16 28 256

21 2 25 32 29 512

22 4 26 64 210 1024

23 8 27 128 211 2048

CS
omputer

cience

Foundations

In a Binary System...

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 29

• Have 2 digits: 0 and 1

• Places correspond to powers of 2:

20 1 24 16 28 256

21 2 25 32 29 512

22 4 26 64 210 1024

23 8 27 128 211 2048

• To find the value, add all the 1’s and 0’s times their place values.

◦ 10110 = 0× 1 + 1× 2 + 1× 4 + 0× 8 + 1× 16 = 22

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the

exponent

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the

exponent

2. Write down a 1, and n = n minus that power of two

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the

exponent

2. Write down a 1, and n = n minus that power of two

3. Decrement i to work on next-lower binary digit; if i = 0, we’re

done

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the

exponent

2. Write down a 1, and n = n minus that power of two

3. Decrement i to work on next-lower binary digit; if i = 0, we’re

done

4. If 2i > n, then there should be a 0 for that power of two; write

that down, and go to 3

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the

exponent

2. Write down a 1, and n = n minus that power of two

3. Decrement i to work on next-lower binary digit; if i = 0, we’re

done

4. If 2i > n, then there should be a 0 for that power of two; write

that down, and go to 3

5. Else, if 2i = n, then write 0s for all the rest of the digits, and

you’re done

CS
omputer

cience

Foundations

From decimal to binary

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 29

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the

exponent

2. Write down a 1, and n = n minus that power of two

3. Decrement i to work on next-lower binary digit; if i = 0, we’re

done

4. If 2i > n, then there should be a 0 for that power of two; write

that down, and go to 3

5. Else, if 2i = n, then write 0s for all the rest of the digits, and

you’re done

6. Otherwise (2i < n), write a 1, since this power of 2 “fits” in n;

n = n− 2i, and go to 3

CS
omputer

cience

Foundations

The algorithm

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 29

1: Algorithm Convert(d)

2: Input: d, a decimal number

3: Output: the binary version of d
4: Let n be largest whole number such that 2n ≤ d
5: while n ≥ 0 do

6: if d = 2n then

7: Output 1 followed by n− 1 0s

8: return

9: else if d < 2n then

10: Output 0
11: n = n− 1
12: else

13: Output 1

14: d = d− 2n

15: n = n− 1
16: end if

17: end while

18: End.

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

23 > d; n = 2 ⇒ 0

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

23 > d; n = 2 ⇒ 0

22 < d ⇒ 1

- 4 Subtract 22 = 4, n = 1
3

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

23 > d; n = 2 ⇒ 0

22 < d ⇒ 1

- 4 Subtract 22 = 4, n = 1
3 21 < d ⇒ 1

- 2 Subtract 21 = 2, n = 0
1

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

23 > d; n = 2 ⇒ 0

22 < d ⇒ 1

- 4 Subtract 22 = 4, n = 1
3 21 < d ⇒ 1

- 2 Subtract 21 = 2, n = 0
1 20 = d, ⇒ 1

CS
omputer

cience

Foundations

Example

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 29

359 28 < d < 29, ∴ n = 8 ⇒ 1

- 256 Subtract 28 = 256, n = 7
103 27 > d; n = 6 ⇒ 0

26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

23 > d; n = 2 ⇒ 0

22 < d ⇒ 1

- 4 Subtract 22 = 4, n = 1
3 21 < d ⇒ 1

- 2 Subtract 21 = 2, n = 0
1 20 = d, ⇒ 1

So 35910 = 1011001112

CS
omputer

cience

Foundations

Adders

Binary Numbers

• A Closer Look at Our

Digital System

• In a Binary System...

• From decimal to

binary

• Algorithm

Adders

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 29

There are only 10 kinds of people in this world. Those that
understand binary and those that don’t.

– graduate student’s T-shirt

CS
omputer

cience

Foundations

Use Arithmetic Facts to Add Numbers

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 29

• Addition results from applying facts about arithmetic to numbers

• For the computer to use arithmetic facts, we need to construct a

circuit.

• So: start with a truth table.

• Construct a truth table for all of the inputs, including the possible

carry.

CS
omputer

cience

Foundations

Truth Table for Addition

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 29

Carry-in A B Carry-out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

CS
omputer

cience

Foundations

Circuit from truth table

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 29

• Can we find a circuit for this? A minimal circuit?

CS
omputer

cience

Foundations

Circuit from truth table

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 29

• Can we find a circuit for this? A minimal circuit?

• Karnaugh map for carry out:

00 01 11 10

0

1

AB

C_out

C_in A B C_out Sum

 0 0 0 0 0
 0 0 1 0 1
 0 1 0 0 1
 0 1 1 1 0
 1 0 0 0 1
 1 0 1 1 0
 1 1 0 1 0
 1 1 1 1 1

1

1 11

AB + BC + AC

CS
omputer

cience

Foundations

Circuit from truth table

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 29

• Can we find a circuit for this? A minimal circuit?

• Karnaugh map for sum out:

00 01 11 10

0

1

AB

Sum

C_in A B C_out Sum

 0 0 0 0 0
 0 0 1 0 1
 0 1 0 0 1
 0 1 1 1 0
 1 0 0 0 1
 1 0 1 1 0
 1 1 0 1 0
 1 1 1 1 1

1

1

1

1

~A~BC + ~AB~C +
 ABC + A~BC

CS
omputer

cience

Foundations

A better idea

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 29

• So minimization using Karnaugh maps, algebraic substitution –

not so good!

• Can we do better?

CS
omputer

cience

Foundations

A better idea

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 29

• So minimization using Karnaugh maps, algebraic substitution –

not so good!

• Can we do better?

• Maybe – inspect the truth table

CS
omputer

cience

Foundations

A better idea

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 29

• So minimization using Karnaugh maps, algebraic substitution –

not so good!

• Can we do better?

• Maybe – inspect the truth table

• Things are simplified when we look at just A and B as inputs:

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

CS
omputer

cience

Foundations

A better idea

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 29

• So minimization using Karnaugh maps, algebraic substitution –

not so good!

• Can we do better?

• Maybe – inspect the truth table

• Things are simplified when we look at just A and B as inputs:

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

• Sum and carry – both correspond to basic operations/gates

CS
omputer

cience

Foundations

A better idea

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 29

• So minimization using Karnaugh maps, algebraic substitution –

not so good!

• Can we do better?

• Maybe – inspect the truth table

• Things are simplified when we look at just A and B as inputs:

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

• Sum and carry – both correspond to basic operations/gates

• Sum = A⊕B

CS
omputer

cience

Foundations

A better idea

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 29

• So minimization using Karnaugh maps, algebraic substitution –

not so good!

• Can we do better?

• Maybe – inspect the truth table

• Things are simplified when we look at just A and B as inputs:

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

• Sum and carry – both correspond to basic operations/gates

• Sum = A⊕B

• Carry = AB

CS
omputer

cience

Foundations

Half-Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 29

We can create a very simple circuit to add A and B.

A B

Co

Sum

Half-adder because only does half the job.

CS
omputer

cience

Foundations

Half-Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 29

We can create a very simple circuit to add A and B.

A B

Co

Sum

Half-adder because only does half the job.

We need a full adder that adds A+B + Cin

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

• Generating S (sum):

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

• Generating S (sum):

◦ S = A+B + Cin

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

• Generating S (sum):

◦ S = A+B + Cin = (A+B) + Cin

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

• Generating S (sum):

◦ S = A+B + Cin = (A+B) + Cin = Sh + Cin

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

• Generating S (sum):

◦ S = A+B + Cin = (A+B) + Cin = Sh + Cin

◦ Use another half-adder: Sh, Cin −→ Sh2 = S

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 29

• A, B, Cin −→ S (sum), C (carry out)

• Can we use a half-adder + additional logic get outputs?

• Half adder: A, B −→ Sh, Ch

• Generating S (sum):

◦ S = A+B + Cin = (A+B) + Cin = Sh + Cin

◦ Use another half-adder: Sh, Cin −→ Sh2 = S

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1?

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

◦ Case 1: A+B = 102

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

◦ Case 1: A+B = 102

• Doesn’t matter what Cin is: C = 1
• In this case: Ch = 1

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

◦ Case 1: A+B = 102

• Doesn’t matter what Cin is: C = 1
• In this case: Ch = 1

◦ Case 2: A+B = 1 and Cin = 1

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

◦ Case 1: A+B = 102

• Doesn’t matter what Cin is: C = 1
• In this case: Ch = 1

◦ Case 2: A+B = 1 and Cin = 1

• This means that Sh = 1, Cin = 1
• In this case, carry out of second half-adder Ch2 = 1

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

◦ Case 1: A+B = 102

• Doesn’t matter what Cin is: C = 1
• In this case: Ch = 1

◦ Case 2: A+B = 1 and Cin = 1

• This means that Sh = 1, Cin = 1
• In this case, carry out of second half-adder Ch2 = 1

◦ So C = 1 when either either or both half-adder carries is 1

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 29

• When is C (carry out) = 1? When A+B + Cin ≥ 102

◦ Case 1: A+B = 102

• Doesn’t matter what Cin is: C = 1
• In this case: Ch = 1

◦ Case 2: A+B = 1 and Cin = 1

• This means that Sh = 1, Cin = 1
• In this case, carry out of second half-adder Ch2 = 1

◦ So C = 1 when either either or both half-adder carries is 1

◦ ∴ C = Ch ∨ Ch2

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 29

We can create a full adder by putting two half adders together as

described above.

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 29

We can create a full adder by putting two half adders together as

described above.
A B

Ch

hS

inC

S

h2Ch2S

C

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 29

A B

Ch

hS

inC

S

h2Ch2S

C

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 29

A B

Ch

hS

inC

S

h2Ch2S

C

Half-adder

Input1

Input2

Sum

Carry

A

B

carry-in

Sum

carry-out

Half-adder

Input1

Input2

Sum

Carry

CS
omputer

cience

Foundations

Full Adder

Adders

Binary Numbers

Adders

• Adding in computer

• Truth Table

• Circuit

• Insight

• Half-Adder

• Full Adder

Multi-bit Adders

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 29

A B

Ch

hS

inC

S

h2Ch2S

C

Half-adder

Input1

Input2

Sum

Carry

A

B

carry-in

Sum

carry-out

Half-adder

Input1

Input2

Sum

Carry

Sum

In1

In2

Carry
in

Carry
out

CS
omputer

cience

Foundations

Creating Multi-Bit Adders

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 29

• Add multi-digit binary numbers using a full-adder for each bit.

• Problem: How to compute the carry-in for adder n?

CS
omputer

cience

Foundations

Computing Carries: Ripple Carry

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 23 / 29

• Hook up required number of full adders.

• As carry is calculated, passed to next bit.

Full-Adder

Input1 Input2

carry-in

sum carry

Full-Adder

Input1 Input2

carry-in

sum carry

Full-Adder

Input1 Input2

carry-in

sum carry

a0 b0 a1 b1 a2 b2

carry-in carry-out

S0 S1 S2

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 24 / 29

• First calculate what carry bits would be, based on previous bits

• Another way to specify carry-out is: carry-out of any full-adder

(Cn) is true if:

◦ carry-out of the first half-adder (AnBn) is true, or

◦ either one of the inputs and the carry-in is true:

(An +Bn)Cn−1

• So: Cn = AnBn + (An +Bn)Cn−1 – a recurrence relation

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 29

• We can calculate any carry using the recurrence relation:

Cn = AnBn + (An +Bn)Cn−1

◦ C0 = A0B0, assuming no carry-in to low-order bit

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 29

• We can calculate any carry using the recurrence relation:

Cn = AnBn + (An +Bn)Cn−1

◦ C0 = A0B0, assuming no carry-in to low-order bit

◦ C1 = A1B1 + (A1 +B1)C0

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 29

• We can calculate any carry using the recurrence relation:

Cn = AnBn + (An +Bn)Cn−1

◦ C0 = A0B0, assuming no carry-in to low-order bit

◦ C1 = A1B1 + (A1 +B1)C0 ⇒

C1 = A1B1 + (A1 +B1)A0B0

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 29

• We can calculate any carry using the recurrence relation:

Cn = AnBn + (An +Bn)Cn−1

◦ C0 = A0B0, assuming no carry-in to low-order bit

◦ C1 = A1B1 + (A1 +B1)C0 ⇒

C1 = A1B1 + (A1 +B1)A0B0

◦ C2 = A2B2 + (A2 +B2)C1

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 29

• We can calculate any carry using the recurrence relation:

Cn = AnBn + (An +Bn)Cn−1

◦ C0 = A0B0, assuming no carry-in to low-order bit

◦ C1 = A1B1 + (A1 +B1)C0 ⇒

C1 = A1B1 + (A1 +B1)A0B0

◦ C2 = A2B2 + (A2 +B2)C1 ⇒

C2 = A2B2 + (A2 +B2)(A1B1 + (A1 +B1)A0B0)
◦ ...

CS
omputer

cience

Foundations

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 26 / 29

• Alternative could be done using ⊕:

◦ For carry-out of the first full-adder (C0), it’s the carry-out of

the full-adder’s first half-adder OR’d with the carry-out of the

second:

C0 = C0h
∨ C0f

⇒

C0 = A0B0 ∨ S0Cin ⇒

C0 = A0B0 ∨ (A0 ⊕B0)Cin

◦ C1 is computable based on C0 in the same way:

C1 = A1B1 ∨ (A1 ⊕B1)C0 ⇒

C1 = A1B1 ∨ (A1 ⊕B1)(A0B0 ∨ (A0 ⊕B0)Cin)
◦ Can generalize to n bits

• But better to keep with ANDs and ORs

CS
omputer

cience

Foundations

Trade-offs for Types of Carry Propagation

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 27 / 29

• Ripple carry has larger delay.

◦ Ripple carry has delay as more significant binary digits wait

for results from less significant digits.

◦ Carry lookahead uses a sum of products to get result for each

carry, so only a two gate delay (have an AND layer and an OR

layer).

• Complexity of circuit.

◦ Ripple carry requires only connecting carry-out to next

carry-in.

◦ Number of AND gates and number of inputs to OR gate is on

the order of the number of digits for carry lookahead (i.e.,

O(n), where n is the number of digits)

CS
omputer

cience

Foundations

Combining Ripple Carry and Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 28 / 29

• Minimize complexity of carry lookahead by only using it on a

small number of bits in a group.

CS
omputer

cience

Foundations

Combining Ripple Carry and Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 28 / 29

• Minimize complexity of carry lookahead by only using it on a

small number of bits in a group.

• Put groups together with a ripple carry.

CS
omputer

cience

Foundations

Combining Ripple Carry and Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 28 / 29

• Minimize complexity of carry lookahead by only using it on a

small number of bits in a group.

• Put groups together with a ripple carry.

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

• . . . need to think outside the mechanistic box!

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

• . . . need to think outside the mechanistic box!

• Easy way of combining circuits may not be best way

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

• . . . need to think outside the mechanistic box!

• Easy way of combining circuits may not be best way

◦ Sometimes best way requires a lot of work to find

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

• . . . need to think outside the mechanistic box!

• Easy way of combining circuits may not be best way

◦ Sometimes best way requires a lot of work to find

◦ Sometimes “best” may not have a single meaning. . .

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

• . . . need to think outside the mechanistic box!

• Easy way of combining circuits may not be best way

◦ Sometimes best way requires a lot of work to find

◦ Sometimes “best” may not have a single meaning. . .

◦ . . .may have to trade off (e.g.) time for circuit complexity

CS
omputer

cience

Foundations

What have we learned?

Adders

Binary Numbers

Adders

Multi-bit Adders

• Multi-bit Adders

• Ripple Carry

• Carry Lookahead

• Trade-offs

• Mixed Carries

• Conclusion

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 29 / 29

• Combinational circuits are important for computers

• Sometimes direct minimization of circuits via SOP may not be

best. . .

• . . . need to think outside the mechanistic box!

• Easy way of combining circuits may not be best way

◦ Sometimes best way requires a lot of work to find

◦ Sometimes “best” may not have a single meaning. . .

◦ . . .may have to trade off (e.g.) time for circuit complexity

• Sometimes what looks hard to implement (carry lookahead) may

not be (2 layers of gates)

	Homework
	Adders
	What is an adder?
	Why Study Adders?
	How Do We Do Addition?

	Binary Numbers
	Numbers and Digital Logic
	A Closer Look at Our Digital System
	In a Binary System...
	From decimal to binary
	The algorithm
	Example
	

	Adders
	Use Arithmetic Facts to Add Numbers
	Truth Table for Addition
	Circuit from truth table
	A better idea
	Half-Adder
	Full Adder
	Full Adder
	Full Adder
	Full Adder

	Multi-bit Adders
	Creating Multi-Bit Adders
	Computing Carries: Ripple Carry
	Computing Carries: Carry Lookahead
	Computing Carries: Carry Lookahead
	Computing Carries: Carry Lookahead
	Trade-offs for Types of Carry Propagation
	 Combining Ripple Carry and Carry Lookahead
	What have we learned?

