Homework

Adders

Binary Numbers

Adders

- Reading: Chapter 8
- Exercises: Chapter 8, all
 - Due Friday, 9/28

COS 140: Foundations of Computer Science

Adders

Fall 2018

What is an adder?

Adders

- What is an adder?
- Why Study Adders?
- How Do We Do Addition?

Binary Numbers

Adders

- An adder is a logic circuit that adds binary numbers
- Could add two 1-digit numbers or two *n*-bit numbers

Why Study Adders?

Adders

- What is an adder?
- Why Study Adders?
- How Do We Do Addition?

Binary Numbers

Adders

- Interesting example of a combinational circuit.
 - Circuit whose output relies solely on its inputs.
 - \circ $\,$ Perform an important function for the computer.
 - Addition is also basis for other arithmetic functions in the computer (subtraction, multiplication, etc.)
 - Would like the function done in hardware so it is done quickly.

How Do We Do Addition?

Adders

- What is an adder?
- Why Study Adders?
- How Do We Do Addition?

Binary Numbers

Adders

- Write down numbers that will be added using symbols from 0 to
 9.
- 2. Use arithmetic facts to add numbers in a column. If more than 9, carry the most significant digit to the next column.

How Do We Do Addition?

Adders

- What is an adder?
- Why Study Adders?
- How Do We Do Addition?

Binary Numbers

Adders

- Write down numbers that will be added using symbols from 0 to
 9.
- 2. Use arithmetic facts to add numbers in a column. If more than 9, carry the most significant digit to the next column.

Numbers and Digital Logic

Adders

Binary Numbers

• A Closer Look at Our Digital System

- In a Binary System...
- From decimal to binary
- Algorithm

Adders

- Symbols will correspond to the 0 or 1 that is the input or output of the circuit. So, have 2 symbols to work with, not 10.
 - Create a binary system that is like our digital system.

A Closer Look at Our Digital System

Adders

Binary Numbers

- A Closer Look at Our Digital System
- In a Binary System...
- From decimal to binary
- Algorithm

Adders

Multi-bit Adders

• Have 10 digits: 0–9

Have "places" for 1's, 10's, 100's, 1000's, 10,000's, etc. that correspond to powers of 10.

A Closer Look at Our Digital System

Adders

- **Binary Numbers**
- A Closer Look at Our Digital System
- In a Binary System...
- From decimal to binary
- Algorithm
- Adders
- Multi-bit Adders

- Have 10 digits: 0–9
 - Have "places" for 1's, 10's, 100's, 1000's, 10,000's, etc. that correspond to powers of 10.
 - $\circ \quad 10^0 = 1; 10^1 = 10; 10^2 = 100; 10^3 = 1000; 10^4 = 10,000$
- To find the value of a number, add all the digits times their place values.

A Closer Look at Our Digital System

Adders

- **Binary Numbers**
- A Closer Look at Our Digital System
- In a Binary System...
- From decimal to binary
- Algorithm
- Adders
- Multi-bit Adders

- Have 10 digits: 0–9
 - Have "places" for 1's, 10's, 100's, 1000's, 10,000's, etc. that correspond to powers of 10.
 - $\circ \quad 10^0 = 1; 10^1 = 10; 10^2 = 100; 10^3 = 1000; 10^4 = 10,000$
- To find the value of a number, add all the digits times their place values.
 - $\circ 359 = 9 \times 1 + 5 \times 10 + 3 \times 100$

In a Binary System...

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

• Have 2 digits: 0 and 1

• Places correspond to powers of 2

In a Binary System...

Adders

Binary Numbers

- A Closer Look at Our Digital System
- In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

• Have 2 digits: 0 and 1

Places correspond to powers of 2:

2	0	1	2^4	16	2^{8}	256
2	1	2	2^{5}	32	2^{9}	512
2	2	4	2^{6}	64	2^{10}	1024
2	3	8	2^{7}	128	2^{11}	2048

In a Binary System...

Adders

Binary Numbers

- A Closer Look at Our Digital System
- In a Binary System...
- From decimal to binary
- Algorithm

Adders

Multi-bit Adders

- Have 2 digits: 0 and 1
 - Places correspond to powers of 2:

	2^{0}	1	2^4	16	2^{8}	256
\square	2^{1}	2	2^{5}	32	2^{9}	512
	2^2	4	2^{6}	64	2^{10}	1024
	2^3	8	2^{7}	128	2^{11}	2048

To find the value, add all the 1's and 0's times their place values.
10110 = 0 × 1 + 1 × 2 + 1 × 4 + 0 × 8 + 1 × 16 = 22

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the exponent

Computer Science Foundations

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

- 1. First find the largest power of two less than n; let i be the exponent
- 2. Write down a 1, and n = n minus that power of two

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

- 1. First find the largest power of two less than n; let i be the exponent
- 2. Write down a 1, and n = n minus that power of two
- 3. Decrement i to work on next-lower binary digit; if i = 0, we're done

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

- 1. First find the largest power of two less than n; let i be the exponent
- 2. Write down a 1, and n = n minus that power of two
- 3. Decrement i to work on next-lower binary digit; if i = 0, we're done
- 4. If $2^i > n$, then there should be a 0 for that power of two; write that down, and go to 3

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

- 1. First find the largest power of two less than n; let i be the exponent
- 2. Write down a 1, and n = n minus that power of two
- 3. Decrement i to work on next-lower binary digit; if i = 0, we're done
- 4. If $2^i > n$, then there should be a 0 for that power of two; write that down, and go to 3
- 5. Else, if $2^i = n$, then write 0s for all the rest of the digits, and you're done

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

- 1. First find the largest power of two less than n; let i be the exponent
- 2. Write down a 1, and n = n minus that power of two
- 3. Decrement i to work on next-lower binary digit; if i = 0, we're done
- 4. If $2^i > n$, then there should be a 0 for that power of two; write that down, and go to 3
- 5. Else, if $2^i = n$, then write 0s for all the rest of the digits, and you're done
- 6. Otherwise $(2^i < n)$, write a 1, since this power of 2 "fits" in n; $n = n 2^i$, and go to 3

The algorithm

Adders

Binary Numbers • A Closer Look at Our **Digital System** • In a Binary System... From decimal to binary • Algorithm Adders Multi-bit Adders

1: **Algorithm** Convert(*d*) **Input:** *d*, a decimal number 2: **Output:** the binary version of d3: Let *n* be largest whole number such that $2^n \leq d$ 4: while $n \ge 0$ do 5: if $d = 2^n$ then 6: Output 1 followed by n-1 0s 7: 8: return else if $d < 2^n$ then 9: 10: Output 0 n = n - 111: 12: else 13: Output 1 $d = d - 2^n$ 14: n = n - 115: end if 16: end while 17: 18: End.

Adders	Ac	bb	ers
--------	----	----	-----

359

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

Algorithm

Adders

Adders

Binary Numbers

- A Closer Look at Our Digital System
- In a Binary System...
- From decimal to binary
- ontary
- Algorithm

Adders

359 $2^8 < d < 2^9$, $\therefore n = 8 \Rightarrow$ 1

Adders		359	$2^8 < d < 2^9$. $n = 8 \Rightarrow$
 Binary Numbers A Closer Look at Our Digital System 	-	256	Subtract $2^8 = 256$, $n = 7$
In a Binary System		103	
binary			
Algorithm			
Adders			

Computer Science Foundations 1

Adders		359	$2^{8} <$
Binary Numbers A Closer Look at Our 	-	256	Subt
Digital System		103	$2^{7} >$
 From decimal to binary 			
Algorithm			
Adders			
Multi-bit Adders			

359 $2^8 < d < 2^9, \therefore n = 8 \Rightarrow$ 1256Subtract $2^8 = 256, n = 7$ 103 $2^7 > d; n = 6 \Rightarrow$ 0

Adders	359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	
Binary Numbers A Closer Look at Our 	- 256	Subtract $2^8 = 256, \ n = 7$	
Digital SystemIn a Binary System	103	$2^7 > d; n = 6 \Rightarrow$	(
 From decimal to binary 		$2^6 < d \Rightarrow$	-
Algorithm	- 64	Subtract $2^{6} = 64, \ n = 5$	
Adders	39	_	
Multi-bit Adders			

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers A Closer Look at Our 	-	256	Subtract $2^8 = 256, n = 7$	
 Digital System In a Binary System 		103	$2^7 > d; n = 6 \Rightarrow$	С
From decimal to binary			$2^6 < d \Rightarrow$	1
Algorithm	-	64	Subtract $2^{6} = 64, \ n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^5 = 32, \ n = 4$	
		7		

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers A Closer Look at Our 	-	256	Subtract $2^8 = 256, \ n = 7$	
Digital SystemIn a Binary System		103	$2^7 > d; n = 6 \Rightarrow$	0
 From decimal to binary 			$2^6 < d \Rightarrow$	1
Algorithm	-	64	Subtract $2^{6} = 64, \ n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^{5} = 32, \ n = 4$	
		7	$2^4 > d; n = 3 \Rightarrow$	0

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers A Closer Look at Our 	-	256	Subtract $2^8 = 256, n = 7$	
Digital SystemIn a Binary System		103	$2^7 > d; \ n = 6 \Rightarrow$	(
 From decimal to binary 			$2^6 < d \Rightarrow$	1
Algorithm	-	64	Subtract $2^{6} = 64, \ n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^{5} = 32, \ n = 4$	
		7	$2^4 > d; n = 3 \Rightarrow$	(

 $2^3 > d; n = 2 \Rightarrow 0$

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers	_	256	Subtract $2^8 = 256$, $n = 7$	
Digital System		103	$2^7 > d \cdot n - 6 \Rightarrow$	C
 In a Binary System From decimal to 		100	$2 > \alpha, n = 0 \rightarrow$	4
binary			$Z^{\circ} < a \Rightarrow$	
Algorithm	-	64	Subtract $2^{\circ} = 64, n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^5 = 32, \ n = 4$	
		7	$2^4 > d; \ n = 3 \Rightarrow$	C
			$2^3 > d; n = 2 \Rightarrow$	C
			$2^2 < d \Rightarrow$	1
	-	4	Subtract $2^2 = 4, \ n = 1$	

3

Computer Science Foundations

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers A Closer Look at Our 	-	256	Subtract $2^8 = 256, n = 7$	
Digital System		103	$2^7 > d; n = 6 \Rightarrow$	0
From decimal to			$2^6 < d \Rightarrow$	1
Algorithm	-	64	Subtract $2^{6} = 64, \ n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^5 = 32, \ n = 4$	
		7	$2^4 > d; \ n = 3 \Rightarrow$	0
			$2^3 > d; n = 2 \Rightarrow$	0
			$2^2 < d \Rightarrow$	1
	-	4	Subtract $2^2 = 4, \ n = 1$	
		3	$2^1 < d \Rightarrow$	1
	-	2	Subtract $2^1 = 2, \ n = 0$	
		1		

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers • A Closer Look at Our	_	256	Subtract $2^8 = 256, n = 7$	
Digital System		103	$2^7 > d \cdot n = 6 \Rightarrow$	0
 In a Binary System From decimal to binary 		100	$2^6 < d \Rightarrow$	1
Algorithm	-	64	Subtract $2^6 = 64, \ n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^5 = 32, \ n = 4$	
		7	$2^4 > d; n = 3 \Rightarrow$	0
			$2^3 > d; n = 2 \Rightarrow$	0
			$2^2 < d \Rightarrow$	1
	-	4	Subtract $2^2 = 4, n = 1$	
		3	$2^1 < d \Rightarrow$	1
	-	2	Subtract $2^1 = 2, n = 0$	
		1	$2^0 = d, \Rightarrow$	1

omputer Science Coundations

Adders		359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
Binary Numbers A Closer Look at Our 	_	256	Subtract $2^8 = 256, n = 7$	
Digital System		103	$2^7 > d; n = 6 \Rightarrow$	(
 In a Binary System From decimal to binary 			$2^6 < d \Rightarrow$	1
Algorithm	-	64	Subtract $2^{6} = 64, \ n = 5$	
Adders		39	$2^5 < d \Rightarrow$	1
Multi-bit Adders	-	32	Subtract $2^5 = 32, \ n = 4$	
		7	$2^4 > d; \ n = 3 \Rightarrow$	(
			$2^3 > d; n = 2 \Rightarrow$	(
			$2^2 < d \Rightarrow$	1
	-	4	Subtract $2^2 = 4, \ n = 1$	
		3	$2^1 < d \Rightarrow$	1
	-	2	Subtract $2^1 = 2, \ n = 0$	
		1	$2^0 = d, \Rightarrow$	-
		S	o $359_{10} = 101100111_2$	

Copyright © 2002–2018 UMaine School of Computing and Information Science – 11 / 29

Adders

Binary Numbers

• A Closer Look at Our Digital System

• In a Binary System...

• From decimal to binary

• Algorithm

Adders

Multi-bit Adders

There are only 10 kinds of people in this world. Those that understand binary and those that don't.

- graduate student's T-shirt

Use Arithmetic Facts to Add Numbers

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- Addition results from applying facts about arithmetic to numbers
- For the computer to use arithmetic facts, we need to construct a circuit.
- So: start with a truth table.
- Construct a truth table for all of the inputs, including the possible carry.

Truth Table for Addition

Adders	Carry-in	Α	В	Carry-out	Sum
Binary Numbers	0	0	0	0	0
Adders Adding in computer	0	0	1	0	1
Truth Table	0	1	0	0	1
 Insight 	0	1	1	1	0
 Half-Adder Full Adder 	1	0	0	0	1
Multi-bit Adders	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1

Circuit from truth table

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

• Can we find a circuit for this? A minimal circuit?

Circuit from truth table

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

Can we find a circuit for this? A minimal circuit?Karnaugh map for carry out:

	L Sui
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 0 1 0 1 0 1
	T

AB

AB + BC + AC

Circuit from truth table

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

Can we find a circuit for this? A minimal circuit?Karnaugh map for sum out:

C_in	А	В	C_out	Sum
0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 1	0 1 0 1 0 1 0 1	0 0 0 1 0 1 1 1	0 1 1 0 1 0 1 0 1
			•	

AB

		00	01	ΤŢ	10
Sum	0		1		1
	1	1		1	

~A~BC + ~AB~C + ABC + A~BC

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- So minimization using Karnaugh maps, algebraic substitution not so good!
- Can we do better?

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- So minimization using Karnaugh maps, algebraic substitution not so good!
- Can we do better?
- Maybe inspect the truth table

Adders

Binary Numbers

- Adders
- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

```
Multi-bit Adders
```

- So minimization using Karnaugh maps, algebraic substitution not so good!
- Can we do better?
- Maybe inspect the truth table
- Things are simplified when we look at just A and B as inputs:

Α	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Adders

Binary Numbers

- Adders
- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

- So minimization using Karnaugh maps, algebraic substitution not so good!
- Can we do better?
- Maybe inspect the truth table
- Things are simplified when we look at just A and B as inputs:

Α	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

• Sum and carry – both correspond to basic operations/gates

Adders

Binary Numbers

- Adders
- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- So minimization using Karnaugh maps, algebraic substitution not so good!
- Can we do better?
- Maybe inspect the truth table
- Things are simplified when we look at just A and B as inputs:

Α	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Sum and carry both correspond to basic operations/gates
- Sum = $A \oplus B$

Adders

Binary Numbers

- Adders
- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- So minimization using Karnaugh maps, algebraic substitution not so good!
- Can we do better?
- Maybe inspect the truth table
- Things are simplified when we look at just A and B as inputs:

Α	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Sum and carry both correspond to basic operations/gates
- Sum = $A \oplus B$
- Carry = AB

Half-Adder

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

We can create a very simple circuit to add A and B.

Half-adder because only does half the job.

Half-Adder

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

Half-adder because only does half the job.

We need a *full adder* that adds $A + B + C_{in}$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?

Adders

Binary Numbers

- Adders
- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$

Adders

Binary Numbers

- Adders
- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$
- Generating S (sum):

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$
- Generating S (sum):

$$\circ \quad S = A + B + C_{in}$$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$
- Generating S (sum):

•
$$S = A + B + C_{in} = (A + B) + C_{in}$$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$
- Generating S (sum):

•
$$S = A + B + C_{in} = (A + B) + C_{in} = S_h + C_{in}$$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$
- Generating S (sum):
 - $S = A + B + C_{in} = (A + B) + C_{in} = S_h + C_{in}$
 - Use another half-adder: S_h , $C_{in} \longrightarrow S_{h2} = S$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

- $A, B, C_{in} \longrightarrow S$ (sum), C (carry out)
- Can we use a half-adder + additional logic get outputs?
- Half adder: $A, B \longrightarrow S_h, C_h$
- Generating S (sum):
 - $S = A + B + C_{in} = (A + B) + C_{in} = S_h + C_{in}$
 - Use another half-adder: S_h , $C_{in} \longrightarrow S_{h2} = S$

When is C (carry out) = 1?

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$

- Doesn't matter what C_{in} is: C = 1
- In this case: $C_h = 1$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$

- Doesn't matter what C_{in} is: C = 1
- In this case: $C_h = 1$
- Case 2: A + B = 1 and $C_{in} = 1$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$

- Doesn't matter what C_{in} is: C = 1
- In this case: $C_h = 1$
- Case 2: A + B = 1 and $C_{in} = 1$
 - This means that $S_h = 1$, $C_{in} = 1$
 - In this case, carry out of second half-adder $C_{h2} = 1$

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$

- Doesn't matter what C_{in} is: C = 1
- In this case: $C_h = 1$
- Case 2: A + B = 1 and $C_{in} = 1$
 - This means that $S_h = 1$, $C_{in} = 1$
 - In this case, carry out of second half-adder $C_{h2} = 1$
- \circ So C=1 when either either or both half-adder carries is 1

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$

- Doesn't matter what C_{in} is: C = 1
- In this case: $C_h = 1$
- Case 2: A + B = 1 and $C_{in} = 1$
 - This means that $S_h = 1$, $C_{in} = 1$
 - In this case, carry out of second half-adder $C_{h2} = 1$
- So C = 1 when either either or both half-adder carries is 1
 ∴ C = C_h ∨ C_{h2}

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

We can create a full adder by putting two half adders together as described above.

Adders

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Multi-bit Adders

We can create a full adder by putting two half adders together as described above.

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Binary Numbers

Adders

- Adding in computer
- Truth Table
- Circuit
- Insight
- Half-Adder
- Full Adder

Creating Multi-Bit Adders

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Add multi-digit binary numbers using a full-adder for each bit.
- Problem: How to compute the carry-in for adder *n*?

Computing Carries: Ripple Carry

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• As carry is calculated, passed to next bit.

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- First calculate what carry bits would be, based on previous bits
 Another way to specify carry-out is: carry-out of any full-adder (C_n) is true if:
 - \circ carry-out of the first half-adder (A_nB_n) is true, or
 - \circ either one of the inputs and the carry-in is true: $(A_n+B_n)C_{n-1}$
- So: $C_n = A_n B_n + (A_n + B_n) C_{n-1}$ a recurrence relation

Computing Carries: Carry Lookahead

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• We can calculate any carry using the recurrence relation:

$$C_n = A_n B_n + (A_n + B_n) C_{n-1}$$

 \circ $C_0 = A_0 B_0$, assuming no carry-in to low-order bit

Adders

Binary Numbers

Adders

Multi-bit Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• We can calculate any carry using the recurrence relation:

$$C_n = A_n B_n + (A_n + B_n) C_{n-1}$$

• $C_0 = A_0 B_0$, assuming no carry-in to low-order bit • $C_1 = A_1 B_1 + (A_1 + B_1) C_0$

Adders

Binary Numbers

Adders

Multi-bit Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• We can calculate any carry using the recurrence relation:

$$C_n = A_n B_n + (A_n + B_n) C_{n-1}$$

 \circ $C_0 = A_0 B_0$, assuming no carry-in to low-order bit

- $\circ \quad C_1 = A_1 B_1 + (A_1 + B_1) C_0 \Rightarrow$
 - $C_1 = A_1 B_1 + (A_1 + B_1) A_0 B_0$

Adders

Binary Numbers

Adders

Multi-bit Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• We can calculate any carry using the recurrence relation:

$$C_n = A_n B_n + (A_n + B_n) C_{n-1}$$

C₀ = A₀B₀, assuming no carry-in to low-order bit
 C₁ = A₁B₁ + (A₁ + B₁)C₀ ⇒
 C₁ = A₁B₁ + (A₁ + B₁)A₀B₀
 C₂ = A₂B₂ + (A₂ + B₂)C₁

Adders

Binary Numbers

Adders

Multi-bit Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• We can calculate any carry using the recurrence relation:

$$C_n = A_n B_n + (A_n + B_n) C_{n-1}$$

• $C_0 = A_0 B_0$, assuming no carry-in to low-order bit

$$C_{1} = A_{1}B_{1} + (A_{1} + B_{1})C_{0} \Rightarrow C_{1} = A_{1}B_{1} + (A_{1} + B_{1})A_{0}B_{0} \circ C_{2} = A_{2}B_{2} + (A_{2} + B_{2})C_{1} \Rightarrow C_{2} = A_{2}B_{2} + (A_{2} + B_{2})(A_{1}B_{1} + (A_{1} + B_{1})A_{0}B_{0}) \circ \dots$$

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Alternative could be done using \oplus :
 - For carry-out of the first full-adder (C_0) , it's the carry-out of the full-adder's first half-adder OR'd with the carry-out of the second:

$$C_0 = C_{0_h} \lor C_{0_f} \Rightarrow$$

$$C_h = A_h B_h \lor S_h C_h$$

$$C_0 = A_0 B_0 \lor S_0 C_{in} \Rightarrow$$

- $C_0 = A_0 B_0 \lor (A_0 \oplus B_0) C_{in}$
- C_1 is computable based on C_0 in the same way: $C_1 = A_1 B_1 \lor (A_1 \oplus B_1) C_0 \Rightarrow$
 - $C_1 = A_1 B_1 \lor (A_1 \oplus B_1) (A_0 B_0 \lor (A_0 \oplus B_0) C_{in})$
- \circ Can generalize to n bits
- But better to keep with ANDs and ORs

Trade-offs for Types of Carry Propagation

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Ripple carry has larger delay.
 - Ripple carry has delay as more significant binary digits wait for results from less significant digits.
 - Carry lookahead uses a sum of products to get result for each carry, so only a two gate delay (have an AND layer and an OR layer).
- Complexity of circuit.
 - Ripple carry requires only connecting carry-out to next carry-in.
 - Number of AND gates and number of inputs to OR gate is on the order of the number of digits for carry lookahead (i.e., O(n), where n is the number of digits)

Combining Ripple Carry and Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

• Minimize complexity of carry lookahead by only using it on a small number of bits in a group.

Combining Ripple Carry and Carry Lookahead

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Minimize complexity of carry lookahead by only using it on a small number of bits in a group.
- Put groups together with a ripple carry.

Combining Ripple Carry and Carry Lookahead

Adders

Binary Numbers

Adders

Multi-bit Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

omputer

• Minimize complexity of carry lookahead by only using it on a small number of bits in a group.

Put groups together with a ripple carry.

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...

Adders

- **Binary Numbers**
- Adders
- Multi-bit Adders
- Multi-bit Adders
- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...
- ... need to think outside the mechanistic box!

Adders

- **Binary Numbers**
- Adders
- Multi-bit Adders
- Multi-bit Adders

- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...
- ... need to think outside the mechanistic box!
- Easy way of combining circuits may not be best way

Adders

- **Binary Numbers**
- Adders
- Multi-bit Adders
- Multi-bit Adders

- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...
- ... need to think outside the mechanistic box!
- Easy way of combining circuits may not be best way
 - Sometimes best way requires a lot of work to find

Adders

- **Binary Numbers**
- Adders
- Multi-bit Adders
- Multi-bit Adders

- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...
- ... need to think outside the mechanistic box!
- Easy way of combining circuits may not be best way
 - Sometimes best way requires a lot of work to find
 - Sometimes "best" may not have a single meaning...

Adders

Binary Numbers

Adders

- Multi-bit Adders
- Multi-bit Adders

- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...
- ... need to think outside the mechanistic box!
- Easy way of combining circuits may not be best way
 - Sometimes best way requires a lot of work to find
 - Sometimes "best" may not have a single meaning...
 - ... may have to trade off (e.g.) time for circuit complexity

Adders

- **Binary Numbers**
- Adders
- Multi-bit Adders
- Multi-bit Adders

Ο

- Ripple Carry
- Carry Lookahead
- Trade-offs
- Mixed Carries
- Conclusion

- Combinational circuits are important for computers
- Sometimes direct minimization of circuits via SOP may not be best...
- ... need to think outside the mechanistic box!
- Easy way of combining circuits may not be best way
 - Sometimes best way requires a lot of work to find
 - Sometimes "best" may not have a single meaning...
 - ... may have to trade off (e.g.) time for circuit complexity
- Sometimes what looks hard to implement (carry lookahead) may not be (2 layers of gates)

