Homework

- □ Reading: Chapter 8
- □ Exercises: Chapter 8, all
- □ Due Friday, 9/28

Copyright © 2002–2018 UMaine Computer Science Department – 1 / 29

COS 140: Foundations of Computer Science

Adders

Fall 2018

Adders What is an adder?	3 3 4 5
Binary Numbers	6
A Closer Look at Our Digital System	7
In a Binary System	8
From decimal to binary	9
Algorithm	10
Adders 1	13
Adding in computer	13
Truth Table	14
Circuit	15
Insight	16
Half-Adder	17
Full Adder	18
Multi-bit Adders 2	22
Multi-bit Adders	22
Ripple Carry	<u>23</u>
Carry Lookahead	<u>2</u> 4
Trade-offs	27
Mixed Carries	28
Conclusion	<u>29</u>

What is an adder?

- $\hfill\square$ An adder is a logic circuit that adds binary numbers
- $\hfill\square$ Could add two 1-digit numbers or two n-bit numbers

Copyright © 2002–2018 UMaine Computer Science Department - 3 / 29

Why Study Adders?

- □ Interesting example of a combinational circuit.
 - Circuit whose output relies solely on its inputs.
 - Perform an important function for the computer.
 - ▶ Addition is also basis for other arithmetic functions in the computer (subtraction, multiplication, etc.)
 - ▶ Would like the function done in hardware so it is done quickly.

Copyright © 2002–2018 UMaine Computer Science Department - 4 / 29

How Do We Do Addition?

- 1. Write down numbers that will be added using symbols from 0 to 9.
- 2. Use arithmetic facts to add numbers in a column. If more than 9, carry the most significant digit to the next column.

Copyright © 2002–2018 UMaine Computer Science Department – 5 / 29

Numbers and Digital Logic

- $\hfill\square$ Symbols will correspond to the 0 or 1 that is the input or output of the circuit. So, have 2 symbols to work with, not 10.
- □ Create a binary system that is like our digital system.

Copyright © 2002–2018 UMaine Computer Science Department - 6 / 29

A Closer Look at Our Digital System

- \Box Have 10 digits: 0–9
- $\hfill\square$ Have "places" for 1's, 10's, 100's, 1000's, 10,000's, etc. that correspond to powers of 10.
 - $10^0 = 1; 10^1 = 10; 10^2 = 100; 10^3 = 1000; 10^4 = 10,000$
- □ To find the value of a number, add all the digits times their place values.
 - $359 = 9 \times 1 + 5 \times 10 + 3 \times 100$

Copyright © 2002–2018 UMaine Computer Science Department - 7 / 29

In a Binary System...

 \Box Have 2 digits: 0 and 1

	Places	correspond	to	powers	of	2:
--	--------	------------	----	--------	----	----

2^{0}	1	2^{4}	16	2^{8}	256
2^{1}	2	2^{5}	32	2^{9}	512
2^{2}	4	2^{6}	64	2^{10}	1024
2^{3}	8	2^{7}	128	2^{11}	2048

 $\hfill\square$ To find the value, add all the 1's and 0's times their place values.

- Example from lecture: 10110 = ?

Copyright © 2002–2018 UMaine Computer Science Department - 8 / 29

From decimal to binary

Given: n, a decimal number

- 1. First find the largest power of two less than n; let i be the exponent
- 2. Write down a 1, and n = n minus that power of two
- 3. Decrement *i* to work on next-lower binary digit; if i = 0, we're done
- 4. If $2^i > n$, then there should be a 0 for that power of two; write that down, and go to 3
- 5. Else, if $2^i = n$, then write 0s for all the rest of the digits, and you're done
- 6. Otherwise $(2^i < n)$, write a 1, since this power of 2 "fits" in n; $n = n 2^i$, and go to 3

Copyright © 2002–2018 UMaine Computer Science Department - 9 / 29

The algorithm

1:	Algorithm Convert(d)
2:	Input: <i>d</i> , a decimal number
3:	Output: the binary version of d
4:	Let n be largest whole number such that $2^n \leq d$
5:	while $n \ge 0$ do
6:	if $d = 2^n$ then
7:	Output 1 followed by $n-1 \ 0$ s
8:	return
9:	else if $d < 2^n$ then
10:	Output 0
11:	n = n - 1
12:	else
13:	Output 1
14:	$d = d - 2^n$
15:	n = n - 1
16:	end if
17:	end while
18:	End.

Copyright © 2002–2018 UMaine Computer Science Department – 10 / 29

Example			
	359	$2^8 < d < 2^9, \therefore n = 8 \Rightarrow$	1
-	256	Subtract $2^8 = 256, \ n = 7$	
	103	$2^7 > d; \ n = 6 \Rightarrow$	0
		$2^6 < d \Rightarrow$	1
-	64	Subtract $2^6 = 64, \ n = 5$	
	39	$2^5 < d \Rightarrow$	1
-	32	Subtract $2^5 = 32, \ n = 4$	
	7	$2^4 > d; \ n = 3 \Rightarrow$	0
		$2^3 > d; \ n = 2 \Rightarrow$	0
		$2^2 < d \Rightarrow$	1
-	4	Subtract $2^2 = 4, \ n = 1$	
	3	$2^1 < d \Rightarrow$	1
-	2	Subtract $2^1 = 2, n = 0$	
	1	$2^0 = d, \Rightarrow$	1
	S	So $359_{10} = 101100111_2$	

Copyright © 2002–2018 UMaine Computer Science Department – 11 / 29

There are only 10 kinds of people in this world. Those that understand binary and those that don't. – graduate student's T-shirt

Copyright © 2002–2018 UMaine Computer Science Department – 12 / 29

Adders

13 / 29

Use Arithmetic Facts to Add Numbers

- □ Addition results from applying facts about arithmetic to numbers
- $\hfill\square$ For the computer to use arithmetic facts, we need to construct a circuit.
- \Box So: start with a truth table.
- $\hfill\square$ Construct a truth table for all of the inputs, including the possible carry.

Copyright © 2002–2018 UMaine Computer Science Department – 13 / 29

Truth Ta	ble	for	Addition	
Carry-in	А	В	Carry-out	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Copyright © 2002–2018 UMaine Computer Science Department – 14 / 29

Copyright © 2002–2018 UMaine Computer Science Department – 15 / 29

Α	better idea				
	So minimization using Karnaugh maps, a	lgebr	raic	substitut	ion – n
	Can we do better?				
	Maybe – inspect the truth table				
	Things are simplified when we look at just	st A	and	B as inp	outs:
		А	В	Carry	Sum
		0	0	0	0
		0	1	0	1
		1	0	0	1
		1	1	1	0
	Sum and carry – both correspond to basi	с ор	erati	ons/gat	es
	$Sum = A \oplus B$				
	Carry = AB				

Copyright © 2002–2018 UMaine Computer Science Department – 16 / 29

Full Adder

- \Box A, B, $C_{in} \longrightarrow S$ (sum), C (carry out)
- $\hfill\square$ Can we use a half-adder + additional logic get outputs?
- \Box Half adder: $A, B \longrightarrow S_h, C_h$
- $\hfill\square$ Generating S (sum):
 - $S = A + B + C_{in} = (A + B) + C_{in} = S_h + C_{in}$
 - Use another half-adder: S_h , $C_{in} \longrightarrow S_{h2} = S$

Copyright © 2002–2018 UMaine Computer Science Department – 18 / 29

Full Adder

- \Box When is C (carry out) = 1? When $A + B + C_{in} \ge 10_2$
 - Case 1: $A + B = 10_2$
 - \triangleright Doesn't matter what C_{in} is: C = 1
 - $_{\triangleright}$ In this case: $C_{h}=1$
 - Case 2: A + B = 1 and $C_{in} = 1$
 - \triangleright This means that $S_h = 1$, $C_{in} = 1$
 - $_{\triangleright}$ In this case, carry out of second half-adder $C_{h2}=1$
 - So C = 1 when either either or both half-adder carries is 1
 - $\therefore C = C_h \lor C_{h2}$

Copyright © 2002–2018 UMaine Computer Science Department – 19 / 29

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 20 / 29

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 21 / 29

Creating Multi-Bit Adders

- □ Add multi-digit binary numbers using a full-adder for each bit.
- \Box Problem: How to compute the carry-in for adder n?

Copyright © 2002–2018 UMaine Computer Science Department - 22 / 29

Copyright © 2002–2018 UMaine Computer Science Department – 23 / 29

Computing Carries: Carry Lookahead

- $\hfill\square$ First calculate what carry bits would be, based on previous bits
- \Box Another way to specify carry-out is: carry-out of any full-adder (C_n) is true if:
 - carry-out of the first half-adder $(A_n B_n)$ is true, or
 - either one of the inputs and the carry-in is true: $(A_n + B_n)C_{n-1}$
- \Box So: $C_n = A_n B_n + (A_n + B_n) C_{n-1}$ a recurrence relation

Copyright © 2002-2018 UMaine Computer Science Department - 24 / 29

Computing Carries: Carry Lookahead

 $\hfill\square$ \hfill We can calculate any carry using the recurrence relation:

$$C_n = A_n B_n + (A_n + B_n) C_{n-1}$$

- $C_0 = A_0 B_0$, assuming no carry-in to low-order bit

-
$$C_1 = A_1B_1 + (A_1 + B_1)C_0 \Rightarrow$$

 $C_1 = A_1B_1 + (A_1 + B_1)A_0B_0$
- $C_2 = A_2B_2 + (A_2 + B_2)C_1 \Rightarrow$
 $C_2 = A_2B_2 + (A_2 + B_2)(A_1B_1 + (A_1 + B_1)A_0B_0)$
- ...

Copyright © 2002-2018 UMaine Computer Science Department - 25 / 29

Computing Carries: Carry Lookahead

- $\hfill\square$ Alternative could be done using \oplus :
 - For carry-out of the first full-adder (C_0) , it's the carry-out of the full-adder's first half-adder OR'd with the carry-out of the second:

 $C_0 = C_{0_h} \lor C_{0_f} \Rightarrow$

- $C_0 = A_0 B_0 \lor S_0 C_{in} \Rightarrow$
- $C_0 = A_0 B_0 \lor (A_0 \oplus B_0) C_{in}$
- C_1 is computable based on C_0 in the same way: $C_1 = A_1 B_1 \lor (A_1 \oplus B_1) C_0 \Rightarrow C_1 = A_1 B_1 \lor (A_1 \oplus B_1) (A_0 B_0 \lor (A_0 \oplus B_0) C_{in})$
- Can generalize to n bits
- □ But better to keep with ANDs and ORs

Copyright © 2002–2018 UMaine Computer Science Department - 26 / 29

Trade-offs for Types of Carry Propagation

- $\hfill\square$ Ripple carry has larger delay.
 - Ripple carry has delay as more significant binary digits wait for results from less significant digits.
 - Carry lookahead uses a sum of products to get result for each carry, so only a two gate delay (have an AND layer and an OR layer).
- $\hfill\square$ Complexity of circuit.
 - Ripple carry requires only connecting carry-out to next carry-in.
 - Number of AND gates and number of inputs to OR gate is on the order of the number of digits for carry lookahead (i.e., O(n), where n is the number of digits)

Copyright © 2002–2018 UMaine Computer Science Department – 27 / 29

Copyright © 2002–2018 UMaine Computer Science Department – 28 / 29

What have we learned?

- $\hfill\square$ Combinational circuits are important for computers
- $\hfill\square$ Sometimes direct minimization of circuits via SOP may not be best. . .
- $\hfill\square$ need to think outside the mechanistic box!
- □ Easy way of combining circuits may not be best way
 - Sometimes best way requires a lot of work to find
 - Sometimes "best" may not have a single meaning...
 - ... may have to trade off (e.g.) time for circuit complexity
- □ Sometimes what looks hard to implement (carry lookahead) may not be (2 layers of gates)

Copyright © 2002–2018 UMaine Computer Science Department – 29 / 29