
Homework

� Reading: Chapter 8
� Exercises: Chapter 8, all
� Due Friday, 9/28

Copyright c© 2002–2018 UMaine Computer Science Department – 1 / 29

1



COS 140: Foundations of Computer Science

Adders

Fall 2018

Adders 3

What is an adder?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Why Study Adders?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
How Do We Do Addition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Binary Numbers 6

A Closer Look at Our Digital System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
In a Binary System... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
From decimal to binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Adders 13

Adding in computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Half-Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Multi-bit Adders 22

Multi-bit Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Ripple Carry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Carry Lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Mixed Carries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



Adders 3 / 29

What is an adder?

� An adder is a logic circuit that adds binary numbers
� Could add two 1-digit numbers or two n-bit numbers

Copyright c© 2002–2018 UMaine Computer Science Department – 3 / 29

3



Why Study Adders?

� Interesting example of a combinational circuit.

– Circuit whose output relies solely on its inputs.
– Perform an important function for the computer.

⊲ Addition is also basis for other arithmetic functions in the computer (subtraction,
multiplication, etc.)

⊲ Would like the function done in hardware so it is done quickly.

Copyright c© 2002–2018 UMaine Computer Science Department – 4 / 29

How Do We Do Addition?

1. Write down numbers that will be added using symbols from 0 to 9.
2. Use arithmetic facts to add numbers in a column. If more than 9, carry the most significant digit to

the next column.

1

3 5 6
+ 2 3 5

5 9 1

Copyright c© 2002–2018 UMaine Computer Science Department – 5 / 29

4



Binary Numbers 6 / 29

Numbers and Digital Logic

� Symbols will correspond to the 0 or 1 that is the input or output of the circuit. So, have 2 symbols to
work with, not 10.

� Create a binary system that is like our digital system.

Copyright c© 2002–2018 UMaine Computer Science Department – 6 / 29

A Closer Look at Our Digital System

� Have 10 digits: 0–9
� Have “places” for 1’s, 10’s, 100’s, 1000’s, 10,000’s, etc. that correspond to powers of 10.

– 100 = 1; 101 = 10; 102 = 100; 103 = 1000; 104 = 10, 000

� To find the value of a number, add all the digits times their place values.

– 359 = 9× 1 + 5× 10 + 3× 100

Copyright c© 2002–2018 UMaine Computer Science Department – 7 / 29

5



In a Binary System...

� Have 2 digits: 0 and 1

� Places correspond to powers of 2:

20 1 24 16 28 256
21 2 25 32 29 512
22 4 26 64 210 1024
23 8 27 128 211 2048

� To find the value, add all the 1’s and 0’s times their place values.

– Example from lecture: 10110 =?

Copyright c© 2002–2018 UMaine Computer Science Department – 8 / 29

From decimal to binary

Given: n, a decimal number

1. First find the largest power of two less than n; let i be the exponent
2. Write down a 1, and n = n minus that power of two
3. Decrement i to work on next-lower binary digit; if i = 0, we’re done
4. If 2i > n, then there should be a 0 for that power of two; write that down, and go to 3
5. Else, if 2i = n, then write 0s for all the rest of the digits, and you’re done
6. Otherwise (2i < n), write a 1, since this power of 2 “fits” in n; n = n− 2i, and go to 3

Copyright c© 2002–2018 UMaine Computer Science Department – 9 / 29

6



The algorithm

1: Algorithm Convert(d)
2: Input: d, a decimal number
3: Output: the binary version of d
4: Let n be largest whole number such that 2n ≤ d
5: while n ≥ 0 do
6: if d = 2n then
7: Output 1 followed by n− 1 0s
8: return
9: else if d < 2n then

10: Output 0
11: n = n− 1
12: else
13: Output 1
14: d = d− 2n

15: n = n− 1
16: end if
17: end while
18: End.

Copyright c© 2002–2018 UMaine Computer Science Department – 10 / 29

Example

359 28 < d < 29, ∴ n = 8 ⇒ 1
- 256 Subtract 28 = 256, n = 7

103 27 > d; n = 6 ⇒ 0
26 < d ⇒ 1

- 64 Subtract 26 = 64, n = 5
39 25 < d ⇒ 1

- 32 Subtract 25 = 32, n = 4
7 24 > d; n = 3 ⇒ 0

23 > d; n = 2 ⇒ 0
22 < d ⇒ 1

- 4 Subtract 22 = 4, n = 1
3 21 < d ⇒ 1

- 2 Subtract 21 = 2, n = 0
1 20 = d, ⇒ 1

So 35910 = 1011001112

Copyright c© 2002–2018 UMaine Computer Science Department – 11 / 29

7



There are only 10 kinds of people in this world. Those that understand binary and those that don’t.
– graduate student’s T-shirt

Copyright c© 2002–2018 UMaine Computer Science Department – 12 / 29

Adders 13 / 29

Use Arithmetic Facts to Add Numbers

� Addition results from applying facts about arithmetic to numbers
� For the computer to use arithmetic facts, we need to construct a circuit.
� So: start with a truth table.
� Construct a truth table for all of the inputs, including the possible carry.

Copyright c© 2002–2018 UMaine Computer Science Department – 13 / 29

8



Truth Table for Addition

Carry-in A B Carry-out Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Copyright c© 2002–2018 UMaine Computer Science Department – 14 / 29

Circuit from truth table

� Can we find a circuit for this? A minimal circuit?
� Karnaugh map for carry out:

00      01      11      10

0

1

AB

C_out

C_in  A  B    C_out  Sum

  0   0  0      0     0
  0   0  1      0     1
  0   1  0      0     1
  0   1  1      1     0
  1   0  0      0     1
  1   0  1      1     0
  1   1  0      1     0
  1   1  1      1     1

1

1 11

AB + BC + AC

Karnaugh map for sum out:

00      01      11      10

0

1

AB

Sum

C_in  A  B    C_out  Sum

  0   0  0      0     0
  0   0  1      0     1
  0   1  0      0     1
  0   1  1      1     0
  1   0  0      0     1
  1   0  1      1     0
  1   1  0      1     0
  1   1  1      1     1

1

1

1

1

~A~BC + ~AB~C +
  ABC + A~BC

Copyright c© 2002–2018 UMaine Computer Science Department – 15 / 29

9



A better idea

� So minimization using Karnaugh maps, algebraic substitution – not so good!

� Can we do better?

� Maybe – inspect the truth table

� Things are simplified when we look at just A and B as inputs:
A B Carry Sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

� Sum and carry – both correspond to basic operations/gates

� Sum = A⊕B

� Carry = AB

Copyright c© 2002–2018 UMaine Computer Science Department – 16 / 29

Half-Adder

We can create a very simple circuit to add A and B.

A B

Co

Sum

Half-adder because only does half the job.

We need a full adder that adds A+B + Cin

Copyright c© 2002–2018 UMaine Computer Science Department – 17 / 29

10



Full Adder

� A, B, Cin −→ S (sum), C (carry out)
� Can we use a half-adder + additional logic get outputs?
� Half adder: A, B −→ Sh, Ch

� Generating S (sum):

– S = A+B +Cin = (A+B) + Cin = Sh + Cin

– Use another half-adder: Sh, Cin −→ Sh2 = S

Copyright c© 2002–2018 UMaine Computer Science Department – 18 / 29

Full Adder

� When is C (carry out) = 1? When A+B + Cin ≥ 102

– Case 1: A+B = 102

⊲ Doesn’t matter what Cin is: C = 1
⊲ In this case: Ch = 1

– Case 2: A+B = 1 and Cin = 1

⊲ This means that Sh = 1, Cin = 1
⊲ In this case, carry out of second half-adder Ch2 = 1

– So C = 1 when either either or both half-adder carries is 1
– ∴ C = Ch ∨ Ch2

Copyright c© 2002–2018 UMaine Computer Science Department – 19 / 29

11



Full Adder

We can create a full adder by putting two half adders together as described above.
A B

Ch

hS

inC

S

h2Ch2S

C

Copyright c© 2002–2018 UMaine Computer Science Department – 20 / 29

Full Adder

A B

Ch

hS

inC

S

h2Ch2S

C

Half-adder

Input1

Input2

Sum

Carry

A

B

carry-in

Sum

carry-out

Half-adder

Input1

Input2

Sum

Carry

Sum

In1

In2

Carry
in

Carry
out

Copyright c© 2002–2018 UMaine Computer Science Department – 21 / 29

12



Multi-bit Adders 22 / 29

Creating Multi-Bit Adders

� Add multi-digit binary numbers using a full-adder for each bit.
� Problem: How to compute the carry-in for adder n?

Copyright c© 2002–2018 UMaine Computer Science Department – 22 / 29

Computing Carries: Ripple Carry

� Hook up required number of full adders.
� As carry is calculated, passed to next bit.

Full-Adder

Input1 Input2

carry-in

sum carry

Full-Adder

Input1 Input2

carry-in

sum carry

Full-Adder

Input1 Input2

carry-in

sum carry

a0 b0 a1 b1 a2 b2

carry-in carry-out

S0 S1 S2

Copyright c© 2002–2018 UMaine Computer Science Department – 23 / 29

13



Computing Carries: Carry Lookahead

� First calculate what carry bits would be, based on previous bits
� Another way to specify carry-out is: carry-out of any full-adder (Cn) is true if:

– carry-out of the first half-adder (AnBn) is true, or
– either one of the inputs and the carry-in is true: (An +Bn)Cn−1

� So: Cn = AnBn + (An +Bn)Cn−1 – a recurrence relation

Copyright c© 2002–2018 UMaine Computer Science Department – 24 / 29

Computing Carries: Carry Lookahead

� We can calculate any carry using the recurrence relation:

Cn = AnBn + (An +Bn)Cn−1

– C0 = A0B0, assuming no carry-in to low-order bit
– C1 = A1B1 + (A1 +B1)C0 ⇒

C1 = A1B1 + (A1 +B1)A0B0

– C2 = A2B2 + (A2 +B2)C1 ⇒

C2 = A2B2 + (A2 +B2)(A1B1 + (A1 +B1)A0B0)
– ...

Copyright c© 2002–2018 UMaine Computer Science Department – 25 / 29

14



Computing Carries: Carry Lookahead

� Alternative could be done using ⊕:

– For carry-out of the first full-adder (C0), it’s the carry-out of the full-adder’s first half-adder OR’d
with the carry-out of the second:
C0 = C0h

∨ C0f
⇒

C0 = A0B0 ∨ S0Cin ⇒

C0 = A0B0 ∨ (A0 ⊕B0)Cin

– C1 is computable based on C0 in the same way: C1 = A1B1 ∨ (A1 ⊕B1)C0 ⇒

C1 = A1B1 ∨ (A1 ⊕B1)(A0B0 ∨ (A0 ⊕B0)Cin)
– Can generalize to n bits

� But better to keep with ANDs and ORs

Copyright c© 2002–2018 UMaine Computer Science Department – 26 / 29

Trade-offs for Types of Carry Propagation

� Ripple carry has larger delay.

– Ripple carry has delay as more significant binary digits wait for results from less significant digits.
– Carry lookahead uses a sum of products to get result for each carry, so only a two gate delay (have

an AND layer and an OR layer).

� Complexity of circuit.

– Ripple carry requires only connecting carry-out to next carry-in.
– Number of AND gates and number of inputs to OR gate is on the order of the number of digits

for carry lookahead (i.e., O(n), where n is the number of digits)

Copyright c© 2002–2018 UMaine Computer Science Department – 27 / 29

15



Combining Ripple Carry and Carry Lookahead

� Minimize complexity of carry lookahead by only using it on a small number of bits in a group.
� Put groups together with a ripple carry.

Copyright c© 2002–2018 UMaine Computer Science Department – 28 / 29

What have we learned?

� Combinational circuits are important for computers
� Sometimes direct minimization of circuits via SOP may not be best. . .
� . . . need to think outside the mechanistic box!
� Easy way of combining circuits may not be best way

– Sometimes best way requires a lot of work to find
– Sometimes “best” may not have a single meaning. . .
– . . .may have to trade off (e.g.) time for circuit complexity

� Sometimes what looks hard to implement (carry lookahead) may not be (2 layers of gates)

Copyright c© 2002–2018 UMaine Computer Science Department – 29 / 29

16


	Homework
	Adders
	What is an adder?
	Why Study Adders?
	How Do We Do Addition?

	Binary Numbers
	Numbers and Digital Logic
	A Closer Look at Our Digital System
	In a Binary System...
	From decimal to binary
	The algorithm
	Example
	

	Adders
	Use Arithmetic Facts to Add Numbers
	Truth Table for Addition
	Circuit from truth table
	A better idea
	Half-Adder
	Full Adder
	Full Adder
	Full Adder
	Full Adder

	Multi-bit Adders
	Creating Multi-Bit Adders
	Computing Carries: Ripple Carry
	Computing Carries: Carry Lookahead
	Computing Carries: Carry Lookahead
	Computing Carries: Carry Lookahead
	Trade-offs for Types of Carry Propagation
	 Combining Ripple Carry and Carry Lookahead
	What have we learned?


