
5
Boolean algebra

In this chapter, we look in some detail at Boolean algebra, which we
introduced in the previous chapter in the context of creating Boolean
expressions and functions. Boolean algebra is important theoretical
knowledge; it is a tool used throughout computer science. It is also
very important in our discussion of digital logic circuits in the next
chapter, since these circuits implement Boolean expressions.

We will focus primarily on using Boolean algebra to prove the
functional equivalence of two circuits, which is important for sim-
plifying circuits or otherwise creating circuits that are implemented
differently, yet do the same thing. We show functional equivalence by
showing that the Boolean algebra representation of one circuit can be
derived from the other or vice versa.

Functional equivalence

Two circuits are functionally equivalent if, in every case, they produce
the same output given the same inputs. The circuits may use dif-
ferent types of gates, different numbers of gates, or have different
connections between the gates. However, whenever their inputs are
the same, their outputs must be the same as well.

Functional equivalence is important, since one circuit may be
superior to another in some way; if we can prove that the two circuits
are functionally equivalent, then we are free to use the superior
implementation.

One circuit can be better than another, equivalent circuit for sev-
eral reasons. For example, a circuit might be improved by reducing
the number of gates necessary to implement its functionality, since
gates have associated costs. These costs include their monetary cost,
the amount of a chip’s area occupied by the gates, and the time re-
quired for the gates to do their work. Fewer gates can result in a
cheaper chip, or a chip that has room for more gates on it that can
then be used for other functions. Fewer gates in a circuit can also re-



64 elise h. turner and roy m. turner

sult in a faster circuit, since each gate takes some small, finite amount
of time (usually in the nanosecond, or billionth of a second, range) to
compute its output from its inputs. Since gates are electronic circuits
themselves, they consume power and produce heat. Fewer gates,
then, results in more efficient, cooler chips.

We may also want to find an equivalent circuit for a function that
uses only particular kinds of gates. For example, if we have described
the function using AND, OR, and NOT gates, but we have available only
NAND gates. Or we may want to use only NAND gates, since they can
be simpler, cheaper gates. In either case, we will need to find an
equivalent circuit composed only of NAND gates.

We show that two logic circuits are functionally equivalent by
showing that the Boolean algebra expressions representing them are
equivalent. There are in general two ways to prove that two Boolean
functions, A and B are equivalent: truth tables and using the laws of
Boolean algebra (algebraic equivalence).

Proving equivalence using truth tables

To prove equivalence using truth tables, a truth table is created that
has two output columns, one for each of the expressions in question.
If the output columns are the same, then the two expressions are
equivalent.

This makes sense, since a truth table lists the output of a function
for every possible combination of inputs; so if the outputs are the
same for each set of inputs for the two functions, then they are
equivalent.

Boolean algebra expressions in which we are interested typically
have more than one operator. To facilitate both the construction
of the table and also to help convince a reader that our table (and
thus our proof) is accurate, we usually include in the table one or
more intermediate columns that correspond to portions of the actual
functions.

Figure 5.1: A truth table-based proof
that A‘ B ” AB` AB.

For example, let’s see how we would prove that A‘ B ” AB` AB.
The truth table in Figure 5.1 shows a truth table-based proof. The
columns are numbered only for explanatory purposes. The first two
columns are, as usual, for the input variables. Since there are two



foundations of computer science a rigorous, non-programming introduction 65

variables, there will be four rows. In column 3, we show the values
for A ‘ B for the input variable values. Columns 4 and 5 give the
values for two subexpressions, applying the NOT operator to A and
B, respectively. Columns 6 and 7 show larger subexpressions that
occur in the results, in this case the two things that are OR’ed together
(called disjuncts, since OR is also known as disjunction. The final
column shows values of the thing we are trying to prove equivalence
to. At each step, we are building on what has gone before. We, and
anyone else who looks at the truth table, can tell now that the two
expressions are the same; it will not need any further explanation.

Proving equivalence using Boolean algebra

Proving equivalence using truth tables is straightforward and easy—
why would we want to use anything else?

There are two reasons. First, in some cases, we are given a func-
tion, but we don’t know what we want to show it is equivalent to.
This happens, for example, when our task is to minimize a circuit; we
can easily create the Boolean function representing the circuit, but
we do not know what the minimized circuit and its Boolean function
are—otherwise, we would be done. In this case, we can’t use a truth
table.

The second reason has to do with the size of truth tables, which
can get very large, very fast, as we discussed in the preceding chap-
ter. For 10 input variables, the table will have 1024 rows. For 20,
1,048,576—rather inconvenient to write down. In fact, assuming 60

lines per page, this truth table would take up almost 90 200-page
books!

So we need something else that will not require so much space
and that ideally can be used even when we don’t know what one
of the functions is, so that we can find a new, minimal function for
one we know. Algebraic substitution fits the bill. Using this, we can
prove that one function is equivalent to another without knowing
in advance with the other is and without having to enumerate each
possible value of both functions. As an added benefit, proof by
algebraic substitution is amenable to automation, using artificial
intelligence (AI) programs called automated theorem provers.

However, using algebraic equivalence can be a little more chal-
lenging than using truth tables. It involves repeatedly substituting
one expression for another, equivalent one in a function until we
find what we are looking for. We ensure that these substitutions are
equivalent by following the laws of Boolean algebra or by making
substitutions that have been proven to be equivalent before.

What is tricky is picking the right law or previous substitution to



66 elise h. turner and roy m. turner

use. We may need to try several things and go down several paths
that lead to dead ends before we find a way to create the proof. If
we are only making legitimate substitutions, we cannot do anything
wrong. However, we can do things that are unhelpful or inelegant.
These false starts should not be included in your final proof. (So
expect to rewrite your proofs before turning in homework!)

Laws of Boolean algebra

Each step in a proof will need to be justified by a law of Boolean
algebra. Most of the laws have a form to be used with AND and a form
to be used with OR. Many of the laws may seem intuitively obvious to
you, or they may just make a lot of sense when you think about them.
Either can be helpful, because when you feel comfortable with the
laws, it will be easier for you to remember and use them.

In this section, we present each law along with a brief discussion
that is meant to explain the law (and help to remember it better).
However, just as with truth tables for operators, you should not rely
on the discussion and your intuition about the laws. The law itself
is what you must use in the proof; everything else is a tool to help
you work with the law. At the end of the section, we have a summary
table which you can use for quick reference.

In this book, we use the term literal to mean either a variable or a
Boolean value (e.g., 1 or 0). Elsewhere (for example, in formal logic in
artificial intelligence), the term is used for both these (positive literals)
as well as for their negation (negative literals). In the following laws,
the letters “A”, “B”, etc., stand for literals or entire subexpressions.

Commutative Law.

AND version: AB “ BA
OR version: A` B “ B` A

The commutative law allows us to change the position of the
operands of particular operators. You already know the the commu-
tative law for addition p3` 2 “ 2` 3q. There are also forms of the
commutative law governing AND and OR, as shown above.

Note that we show only one way of writing each of the laws,
using juxtaposition of terms for AND and ` for OR. We could have also
specified the AND form of the Commutative Law, for example, as:

A^ B “ B^ A

Note that just because many operators obey a commutative law
(i.e., they commute), do not think that they all do. Subtraction, for



foundations of computer science a rigorous, non-programming introduction 67

example, is not commutative: 3´ 2 ‰ 2´ 3. The Boolean operators we
are concerned with here, though, all commute.

The commutative law is used in proofs to switch the order of
operands to match what we are trying to prove or to move operands
together that other laws can operate on. For example, suppose that
we are trying to prove that:

CB`D ” D` CB

Given the rules of precedence, this is the same as:

pCBq `D ” D` pCBq

We would like to use the Commutative Law to rearrange the
left-hand side to look like the right-hand side, but we can’t, at least
not directly: the OR version of the law has to do with variables, not
compound things such as pCBq.

This is a good time to introduce a trick that will come in handy
whenever you are proving things. By letting a new variable, say X,
equal the subexpression pCBq, we get:

X`D ” D` X

which, by the Commutative Law, is correct. Thus it is also true for the
case when X is replaced by the subexpression.

As an example of this and of using the Commutative Law, con-
sider the following. Suppose we are trying to prove that:

ABC ” CAB

We can do this in the following steps:

ABC Given.
pABqC Precedence, definition ().
XC Let X “ pABq.
CX Commutative Law.
CpABq Substitution for X
CAB Precedence, definition of ().

6 ABC ” CAB

This is an actual proof. We start with what we are given, and we
end the proof when we have derived the thing to be proved. At each
step, we use one law, and we explicitly state what that law is.

Associative Law.

AND version: ABC “ pABqC “ ApBCq
OR version: A ` B ` C “ pA ` Bq ` C “

A` pB` Cq



68 elise h. turner and roy m. turner

When three (or more) Boolean values are AND’ed or OR’ed together,
they are normally evaluated from left to right. That is, the first two
associate with each other first. The associative law allows us to
change the order in which they are evaluated, that is, to associate
different ones together first.

Note that the first transformation in each is not an application of
the associative law, but rather is just making explicit with parentheses
the existing association between A and B due to precedence rules.

The Associative Law is used in proofs to make an expression look
more like what we are trying to prove as well as to group subexpres-
sions that other laws can then operate on. Remember, this law only
applies when the operators are of the same type and when the two
operations appear together in the expression.

Null Law.

AND form: 0A “ 0
OR form: 1` A “ 1

Identity Law.

AND form: 1A “ A
OR form: 0` A “ A

Sometimes we would like to get rid of part of an expression in
order to get it to look more like what we’re trying to prove. The
Null and Identity Laws allow us to simplify an expression with
variables by giving instances where the value of that expression can
be predicted.

By examining the truth tables for AND and OR, we can see that for
both there is a value that dominates the expression whenever it is
present. For AND, the result is 0 whenever there is a 0 as an operand.
For OR, the expression is 1 whenever there is a 1 as an operand. The
other value—the value of the other variable—does not dominate the
expression in this way. In fact, its presence does nothing to affect
the value of the overall expression. So, if we AND a 1 with some other
value, the value of the expression will be that other value—a 1 if the
other value is a 1 and a 0 if the other value is a 0. Similarly, if we OR a
0 with another value, that other value will be the value of the whole
expression. These ideas are axiomatized in the Identity and Null
Laws.



foundations of computer science a rigorous, non-programming introduction 69

Absorption Law.

AND form: ApA` Bq “ A
OR form: A` AB “ A

In some situations, a literal dominates the expression because,
regardless of its value, the whole expression will have that value. The
Absorption Law capitalizes on this to allow us to turn much larger
expressions into a single literal in that expression.

For example, in the AND form of the law shown above, if A has
a value of 1, then the OR’ed subexpression will have a value of 1,
regardless of the value of B:

1p1` Bq “ 1^ 1 “ 1

If A “ 0, then we know from the Null Law that the expression will
equal 0—since anything AND’ed with 0 is 0—which is the value of A:

0p0` Bq “ 0B “ 0

.
Thus the expression depends only on the value of A.

We can make a similar argument for the OR form.

Idempotent Law.

AND form: AA “ A
OR form: A` A “ A

When a value is combined with itself and yields the value itself,
the value or operation is said to be idempotent. The Idempotent Law
allows us to create (or remove) copies of literals.

If we apply the AND or OR operator to two operands that are the
same value, the result will be that value. That is, both AND and OR

are idempotent. The Idempotent Law allows us to remove duplicate
copies of literals, which can be handy in proofs.

So we have seen how to group or rearrange variables when the
operations linking them are all the same. What about when they are
different? Are there ways we can transform an expression that has
different kinds of operators in it, so that we can get it closer to what
we are trying to prove?

One law that can help here is the Distributive Law, which allows
us to combine operations in a different way. It’s called the Distribu-



70 elise h. turner and roy m. turner

tive Law because one operator is distributed across another to do the
transformation.

Distributive Law.

AND form: ApB` Cq “ AB` AC
OR form: A` BC “ pA` BqpA` Cq

The AND form should look very familiar: it is identical to the Dis-
tributive Law for arithmetic. The other form of the law is not so
familiar. However, if we rewrite it using ^ and _, it doesn’t look
quite so bizarre:

A_ pB^ Cq “ pA_ Bq ^ pA_ Cq

This works for Boolean algebra, whereas it doesn’t for everyday arith-
metic. Notice that once the operand is distributed, the operations
involving that operand are performed first. This is shown with paren-
theses in the AND form and implied by operator precedence in the OR

form.
As an example of the use of the Distributive Law, consider proving

the AND form of the Absorption Law: ApA` Bq “ A.

ApA` Bq Given.
AA` AB Distributive Law.
A` AB Idempotent Law.
1A` AB Identity Law.
A1` AB Commutative Law.
Ap1` Bq Distributive law.
Ap1q Identity Law.
1A Commutative Law.
A Identity Law.

6 ApA` Bq “ A

Note that although the first occurrence of 1A in the proof may
have led you to wonder where it came from, it is a straightforward
application of the Identity Law—laws can be used in either direction.
Here, we are using the law to introduce a 1 into the expression.
As another example, let’s see if we can prove the OR form of the
Distributive Law using the AND form. We’ll start with the right-hand
side of the OR form:

pA` BqpA` Cq Given.
XpA` Cq Substitution of X for pA` Cq.
XA` XC Distributive Law.
pA` BqA` pA` BqC Substitution.



foundations of computer science a rigorous, non-programming introduction 71

AA` AB` pA` BqC Distributive Law.
AA` AB` AC` BC Distributive Law.
A` AB` AC` BC Idempotent Law.
1A` AB` AC` BC Identity Law.
A1` AB` AC` BC Commutative Law.
Ap1` Bq ` AC` BC Distributive Law.
A1` AC` BC Null Law.
Ap1` Cq ` BC Distributive Law.
A1` BC Null Law.
A` BC Identity Law.

6 pA` BqpA` Cq “ A` BC

Double Negation Law.

A “ A

This law will likely seem obvious. However, double negation
allows us to add or remove negation by asserting that negating an
operation twice is the same as not negating it at all. Since there are
only two values in Boolean logic, the negation operator works as
a toggle between those two values. If you toggle the value once,
you change it from 0 to 1 or from 1 to 0. If you toggle it again, you
change the value back to the original value.

Inverse Law.

AND form: AA “ 0
OR form: A` A “ 1

The Inverse Law allows us to simplify an expression when the
operands of an operator are a value and its inverse. For both opera-
tors, we know what the value of the operation is if the operands are
a value and its inverse. We can remember these values by thinking
about the null and identity laws. For AND, either the A or its inverse
will be 0. If A is 0, then the Null Law tells us that the value of the
operation will be 0. If A is 1, then the inverse of A is 0. We can use
the Commutative Law to change the order of the operands making
the inverse of A the first operand. Now, the first operand is 0 and
the Null Law, once again, can be applied. We can make a similar
argument for OR.



72 elise h. turner and roy m. turner

De Morgan’s Law.

NAND/OR version: AB “ A` B
NOR/AND version: A` B “ A B

De Morgan’s Law allows us to convert between AND and OR opera-
tions. On the left hand sides of the equations above, the result of the
operation will be negated. On the right hand sides, each operand is
negated and the operation has been changed, from AND to OR or vice
versa. If we want to apply De Morgan’s Law but the operation has
not been negated, we can use the law of double negation to negate
the operation (twice) and then apply De Morgan’s Law, for example,
applied to AB:

AB Given.
AB Double negation.
A` B De Morgan’s Law.

Note that although it is tempting, it doesn’t gain us anything to
apply De Morgan’s Law again; if we do, we get:

A` B Given.
A B De Morgan’s Law.
AB Double negation.
AB Double negation.

which gets us back to where we started.
As an example of using De Morgan’s laws, prove that A B` C ”

pA` BqC.

A B` C Given.
X` C Substitution of X for A B
X C De Morgan’s Law.
A B C Subtitution.
pA` BqC De Morgan’s Law.
pA` BqC Double Negation Law, twice.

6 A B` C “ pA` BqC

All of the laws we have seen so far can be summarized in Table
5.2.

Proof

The overall goal is to be able to take the laws of Boolean algebra and
apply them to transform one Boolean expression into another. This



foundations of computer science a rigorous, non-programming introduction 73

Commutative Law: AB “ BA
A` B “ B` A

Associative Law: pABqC “ ApBCq
pA` Bq ` C “ A` pB` Cq

Absorption Law: ApA` Bq “ A
A` AB “ A

Null Law: 0A “ 0
1` A “ 1

Identity Law: 1A “ A
0` A “ A

Idempotent Law: AA “ A
A` A “ A

Distributive Law: ApB` Cq “ AB` AC
A` pBCq “ pA` BqpA` Cq

Double Negation: A “ A

Inverse law: AA “ 0
A` A “ 1

De Morgan’s Law: AB “ A` B
A` B “ A B

Table 5.2: Summary of Boolean algebra
laws.

may be to transform a given expression into one that is minimal
or to prove that one expression is equivalent to another. If we are
considering applying a law to transform expression 1, let’s say, then if
we are very lucky, expression 1 is in a form that exactly matches the
pattern on one side or the other of the “ in the law. For example, if
our expression is WpX`Yq, then this matches the general form of the
Distributive Law, with W being matched to A, X to B, and Y to C in
the statement of the law given above.

This will not always be the case, however. Suppose we are given
pX`YqW. Intuitively, we can see that we can still apply the Distribu-
tive Law, but technically we can’t unless the expression matches one
of the patterns directly. In this case, what we really need to do is to
move W to the left side of the expression. But can we? We have no
law with a pattern that looks exactly like that.

The trick here, as you probably have already figured out, is to treat



74 elise h. turner and roy m. turner

the pieces of an expression—the sub-expressions—as chunks. That is,
if we let a new variable, say Q, be equal to pX`Yq, then we have QW.
This matches the AND form of the Commutative Law, and so we can
apply the law to give WQ. Now, substituting the value of Q, we get
WpX`Yq, which now matches one of the patterns for the Distributive
Law. The renaming of sub-expressions (e.g., pX`Yq “ Q) need not be
written down in the proof, although it can be—and probably should
be, at least while one is learning to write proofs.

Once we understand how we will rename subexpressions as
variables that can match the literals in the laws as given, we can
apply those laws in proofs. To apply a law, the renamed expression
needs to match exactly to one side of the equation given in the law.
Since equality is symmetric (if A “ B then B “ A), it does not matter
whether the left or right side of the equation matches the current
expression. In either case, we match the current expression to one
side of the law’s equation and replace it with the other side of the
equation. The renaming scheme that allows us to match one side of
the equation also needs to be applied to the other. This method of
replacing one expression with an equivalent one is called substitution.
To help the reader of the proof understand what has been done, we
write the name of the law that was applied to the right of the new
expression.

For example, consider proving that

pXZ`YqW “ WX`WYZ

Let’s start with the left-hand side and see if we can derive the right
hand side, using only valid laws of Boolean algebra. We first write
down our starting point:

pXZ`YqW Given

Although we will write the proof following the changes in the left-
hand side, we can think about the proof in any way that is helpful
to us. This equation reminds us of the Distributive Law—it looks
like it, except the operands at the top level are in the reverse order,
and there is an expression pXZq where we find only a variable in the
Distributive Law. So we will have to apply other laws in order to get
the expression into a form that matches the Distributive Law.

Let’s now see if we can get this into a form where the single
variable that is AND’ed with the parenthetical expression is on the
left, rather than on the right. We need to use the Commutative Law,
but the expression as it stands does not match it. So we will rename
things in it until it matches:

AW Let A “ pXZ`Yq



foundations of computer science a rigorous, non-programming introduction 75

Here, we create a new variable, A, and let it name the parenthetical
expression.

Now we have an expression on which we can use the Commuta-
tive Law:

WA Commutative Law

Now we rename it back to the way it was:

WpXZ`Yq Substitution for A

Our next task is to get this expression into a form that we can use
Distributive Law on. It’s almost there, except for the expression XZ
where we expect a single variable. So we rename things again:

WpB`Yq Substitution B “ XZ

Now we can apply the Distributive Law (AND form):

WB`WY Distributive Law

Undoing the substitution, we have:

WXZ`WY Substitution

We’re almost there, but our subexpressions are again out of order,
and we cannot use the Commutative Law as it stands. So we rename
again, two parts this time:

C`D Let C “ WXZ and D “ WY

Now we can use the Commutative Law to switch the order of the
=OR={}ed subexpressions (the disjuncts):

D` C Commutative Law

Once we undo the prior substitution, we are done:

WY`WXZ Substitution

We have successfully proven what we set out to prove. Table 5.3
shows the proof in its entirety.

Table 5.3: A proof that pXZ` YqW “

WX`WYZ.
pXZ`YqW Given
AW Let A “ pXZ`Yq
WA Commutative Law
WpXZ`Yq Substitution for A
WpB`Yq Substitution B “ XZ
WB`WY Distributive Law
WXZ`WY Substitution
C`D C “ WXZ, D “ WY
D` C Commutative Law
WY`WXZ Substitution

6 pXZ`YqW “ WY`WXZ

Proofs are important because they allow computer scientists,
mathematicians, logicians and others to convince people who might
use their ideas that those ideas are sound. It is important to learn to
write proofs even if we expect to convince others of our big ideas in
some other way. Learning to write proofs helps us to develop our
skills in formal thinking. Writing a good proof forces us to think
rigorously and to commit to each step in writing—we are not allowed
to let vague thoughts remain in our argument with the hope that
someone else will ignore the details or fill them in for us. Proofs also



76 elise h. turner and roy m. turner

help us to develop intuition about the system that we are writing
proofs about. This intuition then helps us to work within the system
in all sorts of ways, including coming up with the great ideas which
we need to prove to others.

Creating a proof begins with some intuition about how the things
that you want to prove are related. In our small proof above, our
intuition was that we were reminded of the Distributive Law. We
work from our intuition to mold one of the sides of the equation to fit
the laws that capture that intuition. For example, in the proof above,
we had to change the order of the operands to get to the required
result.

Sounds easy, right? So, why do so many people complain about
writing proofs or just never seem to get it? When proving advanced
concepts, new ideas in mathematics, for example, the person may
simply not have enough intuition about the concept to create the
proof. (There is also the possibility that the new idea is flawed, so it
cannot be proved.) Most students, however, have the ability to create
proofs for what they are asked to prove. Most often, they complain
because creating proofs is frustrating work that may take several
attempts, and they fail because they give up too soon. If you realize
this before you start to write a proof, and give yourself plenty of
time, you are more likely to see writing a proof as an interesting
challenge instead of a nightmare homework assignment. You might
even have fun, and you are sure to be proud of your work when you
have completed it.

Sidebar 5: XOR and equality

Now is a good time for an aside about the relationship between XOR and equality. XOR is true when
one or the other of its inputs is true, but not both. The equality function is true when both of its in-
puts are true or both are false. A little thought will convince you that each of these operators is the
negation of the other. But can we prove it?
We could prove this via a truth table., but let’s instead try proving it via algebraic substitution. XOR,
for two inputs A and B, is defined by the expression AB`AB. Equality is defined as AB`A B. Can
we negate one of these, then prove that it is equivalent to the other?
Let’s try negating equality and proving that that is equal to XOR. (We will skip any very obvious steps
in this proof.)

AB` A B Given
AB A B De Morgan’s Law
pA` BqpA` Bq De Morgan’s Law, twice
pA` BqA` pA` BqB Distributive Law
AA` BA` AB` BB Distributive Law
BA` AB Inverse Law, twice



foundations of computer science a rigorous, non-programming introduction 77

AB` AB Commutative Law
6 AB` A B “ AB` AB

So where do you find the intuition that allows you to create a proof?
Sometimes, the answer jumps right out at you. You may be reminded
of a law, as above. Or what you are trying to prove may have a
meaning that you “know” is right. You will see an example of that
below. These intuitions provide the core of your proof.

As discussed above, if your intuition reminds you of a law, you
must manipulate the expressions so that law can be applied. If
your intuition is about the meaning of the equation and why these
expressions should be equal, you must formalize your idea through
applicable laws.

For example, suppose you are asked to prove ABCD “ CBDA.
Your intuition may tell you that this should be true: we can change
the order of two operands that are AND’ed together, and here we seem
to simply be changing the order over and over again. We use this
intuition to recognize that we must apply the Commutative Law
several times to change the order of the operands.

Our proof is:

ABCD Given.
BACD Commutative Law.
BCAD Commutative Law.
CBAD Commutative Law.
CBDA Commutative Law.

6 ABCD “ CBDA

Sometimes, unfortunately, you have no intuition about how to
begin the proof. In that case, you can try manipulating one or the
other side of the equation to see if you can see relationships between
the newly-generated expressions and the expressions that you have
been given. Be sure to keep track of how the new expressions were
formed, since you will need to include that information in your
proof.

If you still cannot find a way to start, don’t worry. Take a break.
Just getting away from the work for a while can help you find a way
to start the proof when you come back. If you go for a walk, go to
the gym, fold laundry or do some other task that allows you to think
without forcing you to think about the proof, you may find that your
mind wanders back to the proof and to some ideas for how to begin.

A proof is valid if it proves what needs to be proven in a convinc-
ing way. However, just as we continue to edit a paper after the first
draft, many proofs can be improved. Proofs are improved by making



78 elise h. turner and roy m. turner

them more elegant. This means that the proof is simple and uses an
intuitively appealing argument.

Once you have completed a proof, you should make sure that it is
valid and convincing. For the proofs that are discussed in this section,
you can do this by checking all of the steps and making sure that
they give the proper rule as justification and use that rule correctly.
Next, you can try to find other ways of forming a proof. The work
that you have done to create the first proof may give you an insight
that helps you to see a new approach to the proof. You can also study
the existing proof with an eye toward eliminating unnecessary steps
or proving sections of the proof more elegantly.

It can be very frustrating to work on a proof, or on any kind of
hard problem. Here are some suggestions for dealing with that
frustration. Some are specific to proofs, but most can be applied to
any problem which requires a lot of thinking before seeing how to
answer the questions:

Remember that it is not unusual to make several attempts before
you find the right basic argument for your proof.
• Remember that you often have to manipulate an expression to get

it into the form that allows you to apply a particular rule.

• Write things down on scratch paper and use what you need to
create the proof.

• There are also ways to deal with frustration that can be applied to
problem solving and programming in general:

– Take a break and come back.
– Work with others, if allowed by your instructor, to brainstorm

and refine solutions.
– Break the problem into small parts. Work on parts separately

and then put them back together.
– Explain the problem to someone who does not have expertise in

the area to help you clarify your thinking.

Summary

This chapter focused on Boolean algebra, an algebra for two-valued
logic. You have learned some ways of proving equivalence between
two Boolean algebra expressions, including truth table-based proofs
and proof by algebraic substitution. While the former is arguably
easier, we saw that there are two cases where it either should not or
cannot be used: when the number of variables is large and when we
do not know what the expression is to which we are trying to prove
equivalence (e.g., in minimizing an expression/circuit).

The chapter also covers some of the laws of Boolean algebra. We
saw how to apply these laws to do algebraic substitution.



foundations of computer science a rigorous, non-programming introduction 79

In the next chapter, we will see how to create logic circuits from
Boolean algebra specifications.

Review

Further reading

Exercises

1. Prove both the AND and OR forms for the following laws by con-
structing truth tables:

(a) Identity Law
(b) Idempotent Law
(c) Distributive Law
(d) DeMorgan’s Law

2. We can prove that A‘ B ” AB ` AB ” pABq ‚ pABq. Now prove

that A‘ B is also equal to AB ` AB.
For the proof, use algebraic manipulation to show that the expres-
sion given is equivalent to one of the expressions shown in class to
be equivalent to A‘ B.

3. Using algebraic manipulation, prove the OR form of the absorp-
tion law, A ` AB “ A.

4. Using algebraic manipulation, prove that ABC ` ABC “ AC.
5. We are trying to design a circuit for the majority function which has

an output of 1 when most of its inputs are 1. Our circuit will have
three inputs. One expression for the function is ABC ` ABC `

ABC ` ABC. What is the expression with the minimum number
of AND, OR, and NOT gates and number of inputs inputs that you can
find? Prove that your expression is equivalent to the expression
that you have been given.

6. We are trying to design a circuit that has five inputs and has an
output of 1 whenever an odd number of inputs are 1. Write an
algebraic expression that captures the function. You do not need to
minimize the expression in any way.

7. You might wonder, for n inputs, how many possible different
Boolean functions there are. For example, for one input, there are
only four, with these truth tables:

(a) Write the Boolean algebra functions for F1–F4.
(b) (Advanced) Determine a general formula for how many func-

tions are possible for n input variables. How many functions
are possible with 2 inputs? With 3? With 4?



80 elise h. turner and roy m. turner

HINT: You can see how we got 4 functions for a single input.
There are 2 rows in the table for a single input. That means
that, reading down the function output column, there are two
binary digits. With two binary digits, you can represent 22 “ 4
different combinations, and thus, different functions.

1. Prove both the AND and OR forms for the following laws by constructing truth tables:

(a) Identity law
(b) Idempotent law
(c) Distributive law
(d) DeMorgan’s law

2. We can prove that A‘ B ” AB ` AB ” pABq ‚ pABq. Now prove that A‘ B is also equal to AB ` AB.
For the proof, use algebraic manipulation to show that the expression given is equivalent to one of the
expressions shown in class to be equivalent to A‘ B.

3. Using algebraic manipulation, prove the OR form of the absorption law, A ` AB “ A.

4. Using algebraic manipulation, prove that ABC ` ABC “ AC

5. We are trying to design a circuit for the majority function which has an output of 1 when most of its
inputs are 1. Our circuit will have three inputs. One expression for the function is ABC ` ABC ` ABC `

ABC. What is the expression with the minimum number of AND, OR, and NOT gates and number of inputs
inputs that you can find? Prove that your expression is equivalent to the expression that you have been
given.

6. We are trying to design a circuit that has five inputs and has an output of 1 whenever an odd number of
inputs are 1. Write an algebraic expression that captures the function. You do not need to minimize the
expression in any way.

7. You might wonder, for n inputs, how many possible different Boolean functions there are. For example,
for one input, there are only four, with these truth tables:

Input F1 F2 F3 F4

0 0 0 1 1

1 0 1 0 1

(a) Write the Boolean algebra functions for F1–F4.
(b) (Advanced) Determine a general formula for how many functions are possible for n input variables.

How many functions are possible with 2 inputs? With 3? With 4?
HINT: You can see how we got 4 functions for a single input. There are 2 rows in the table for a
single input. That means that, reading down the function output column, there are two binary digits.
With two binary digits, you can represent 22 “ 4 different combinations, and thus, different functions.


