
Digital Logic
Foundations of Computer Science

E.H. Turner and R.M. Turner
2017-05-24.1

This part of the book is about how, at a very basic level, a computer
does what it does. In Chapter ??, we introduced the idea of digital
representation of data (and programs) and, hence, digital hardware.
Before talking in depth about programs such as operating systems,
before talking about programming languages, and even before talk-
ing about the major components of computers and how they work
together, we must first understand at the most basic level what this
digital hardware is and how it operates. Toward this end, we look
in this part of the book at something called digital logic, which is the
underpinning of computers.

An understanding of digital logic is fundamental to an under-
standing of computers, and so this part of the book is different from
most other sections in that there are not one, but three, introductory
chapters, followed by three in-depth chapters. The current chapter
introduces digital logic, including the concepts of logic gates, circuits,
and computer chips. The following chapters present Boolean alge-
bra, digital logic circuits and how they can be specified by Boolean
functions, and circuit minimization—that is, how a given function
can be realized with the minimum number of gates—and covers a
fundamental technique for doing so, Karnaugh maps. After that, the
digital logic part of the book concludes with two chapters discussing
the two major kinds of logic circuits, combinational and sequential,
by focusing on useful example circuits, adders and registers, respec-
tively.

What is digital logic?

The term digital logic is commonly used in two ways. First, it is
used to refer to the basic physical components of the computer that
allow it to process and remember information. Second, it is used to
mean the set of laws and operations that govern the manipulation of
binary information. We will look first at the latter, then see how we
implement digital logic in hardware.

Boolean algebra

Major components of the computer, and indeed the computer as a
whole, can be thought of as computing functions on a set of inputs.

digital logic foundations of computer science 2

We need to take a look at what these functions are and how they are
computed. To do this, we need a way of describing them, which for
computers is Boolean algebra, a type of mathematical language.

Regular algebra uses numbers and variables on which operators,
well, operate. Instead of numbers, Boolean algebra deals with op-
erators that work on true/false values, also called Boolean values.
Evaluating a Boolean algebra expression involves determining the
truth or falsehood of an expression composed of true/false values
and Boolean operators.

For example, consider the statement: “It is raining and the tem-
perature is not below freezing”. This can be represented in Boolean
algebra terms as the conjunction of two statements, “it is raining”
and “the temperature is not below freezing”. The latter statement, in
turn, can be considered equivalent to the negation of the statement
“the temperature is below freezing”. If we call the first statement A
and the second B, then we can represent this whole sentence as the
Boolean algebra statement: A AND NOT B.

Digital computers operate on two values as well, 0 and 1,1 so we 1 Actually, the inputs and outputs of
computers, as well as internal states
of components, are voltage levels, for
example, in the range of 0–3.3 V (volts)
or 0–5 V. Voltage ranges are divided
such that voltages below some value
means “0”, while voltages above some
value mean “1”.

can see that there is a correspondence between Boolean values and
the computer’s binary values, with 0 corresponding to “false” and
1 to “true”. Thus, computers and logic circuits in general naturally
lend themselves to being described by Boolean algebra.

We will have much more to say about Boolean algebra in the next
few chapters, where we discuss how it can be used to describe the
computations performed by digital circuits on their inputs to yield
outputs. In this chapter, we are concerned with the Boolean operators
themselves and some simple expressions composed using them.
These operators describe how values in the computer are operated on
to carry out the computer’s functions.

Truth tables

Although we can describe Boolean operators in English, we really
need a more concise, exact way to describe them that is not open to
different interpretations. For this, we use truth tables.

A B F
0 0 1

0 1 0

1 0 0

1 1 1

A truth table contains a column for each of an operator’s operand
and one for the result of performing the operation. The header row
contains the names we choose to give the operators and the result
(the actual names do not matter). Each row lists a particular com-
bination of values for the operands as well as the result of carrying
out the operand on those values. We include a single row for each
unique combination of values for the operands. Taken together, then,
the rows of the truth table describe the results for every possible
combination of operands.

digital logic foundations of computer science 3

For example, the truth table in the margin tells us the result
(labeled F) of applying the operator to its operands. We also call
operands inputs or variables, and we will often refer to the result as
the output of the operator when given those sets of inputs. This truth
table tells us, for example, that for the inputs A “ 1, B “ 0, the
output is 0, i.e., F “ 0. Note that F is a Boolean function.

As you may have already guessed, truth tables can be used for
more than just single operators. Combinations of operators and their
operands—i.e., Boolean expressions—can also be represented this way,
since each will have a number of variables, each with two possible
values. The truth tables will be in general much bigger, as we will
see later, but the principle is exactly the same: for every possible
combination of input values, list the output (i.e., the value of the
Boolean expression).

We will see later that there is a well-defined relation between the
number of input columns and the number of rows in a truth table.
We will also see that there is a standard way to order the rows.

Boolean operators

Let’s first look at three common Boolean operators, AND, OR, and NOT.
These are important, since together they form a complete operator set:
that is, with these three, we can create expressions for any Boolean
function—and hence, any digital logic circuit.

NOT

The simplest operator is NOT, or negation. The truth table for NOT is
shown to the side. NOT has only one operand, which we call here A.
We can think of A as standing for a statement, such as “It is raining.”
The statement is either true (1) or false (0). The output, now labled
with the expression NOT A rather than a symbol, tells us the truth value
for both possible values of A. In the first row, where A is false, then
“NOT A” is true: if “It is raining” is false, then “It is not raining” is
true.

A NOT A
0 1

1 0For the rest of the operators, we will briefly discuss their meaning
and then give their truth tables. It may be helpful to you to create
your own examples like the one above.

digital logic foundations of computer science 4

AND

The AND operator follows our intuition about what “and” means
in English. The word “and” lets us join two things together (i.e., it
is a conjunction); the conjoined statement is only true if both things
are true. For example, the statement “It is raining and Obama is
president” is only true if it is both raining and if Obama is indeed
president.

This is also true of the conjunction operator AND, as the truth
table in the margin shows. Note that the only row in which the
conjunction is true is the one in which both inputs are true.

A B A AND B
0 0 0

0 1 0

1 0 0

1 1 1

AND is an example of a binary operator, whereas NOT is a unary
operator. This can be confusing, since we are also talking about binary
numbers. Here, though, “binary” just means that the operator takes
two operands.

OR

The OR operator is another one that at first glance seems to follow
our everyday use of the word “or”. However, it is somewhat differ-
ent than we may expect. In English, if we say “It is raining or it is
snowing”, we usually mean either it is raining or it is snowing, but
not both. If “Dan or Phil is driving”, for example, we would be very
surprised if both of them had the wheel. Our normal use of the word
“or” actually corresponds to the logical operation XOR, or exclusive or,
which we discuss below.

A B A OR B
0 0 0

0 1 1

1 0 1

1 1 1

Logical (or Boolean) OR is the inclusive or: one or the other, or both,
of the things OR’d together are true, as the truth table shows.

Boolean expressions

Boolean operators, like arithmetic operators, are not very useful by
themselves, but rather when they are combined into expressions.
As in ordinary algebra, an expression is a statement written as a
combination of operators and operands that has an overall value.
In algebra, the operators are such things as `, ´, ×, and ÷, and
the operands are numbers or variables. Parts of the expression—
subexpressions—can be grouped using parentheses.

Boolean expressions use Boolean operators, constants (true or
false), variables, and parentheses. The overall value of the expression
is one of the two Boolean values, true or false (i.e., 1 or 0).

As in algebra, instead of writing out the name of a Boolean oper-
ator, we usually use symbols. Unfortunately, Boolean algebra differs
from algebra here: there are several sets of symbols in use for the
Boolean operators. Table 1 shows some common symbols used.

digital logic foundations of computer science 5

Operator Examples

NOT ~A A A
AND Aˆ B A^ B AX B AB
OR A` B A_ B AY B

Table 1: Common symbols for Boolean
operators

It can be easy to confuse the symbols we typically use in this
book for AND (^) and OR (_), since they are so similar. One way to
remember which is which is that the ^ symbol looks a little bit like
an “A”, the first letter of “and”.

Note that AND is sometimes represented by the intersection symbol
(X) and sometimes in the same way we represent multiplication; and
OR is sometimes represented by the union symbol (Y) and sometimes
like we represent addition. There are good reasons for this, since
there is similarity between AND, intersection, and multiplication, and
between OR, union, and addition. We won’t belabor this point here,
but you may see some similarities with familiar operators when we
talk more about Boolean algebra in Chapter ??.

Now, armed with this knowledge of how to write Boolean op-
erators, you should have no trouble writing or understanding the
meaning of Boolean expressions. For example, suppose we want to
determine if we should take an umbrella when we leave home in
the morning. We should take an umbrella if it is raining as we are
leaving. We should also take an umbrella if our not-very-reliable
weatherman said it will rain and it looks cloudy. We can create a
function that captures the reasoning we use to make a decision.

For this example, let’s use R to mean that it is raining, W to mean
that the weatherman predicted rain, and C to mean that it is cloudy.
We will let U be the value of the expression. If U “ 1 (i.e., “true”),
then we will take an umbrella, otherwise we will not.

To write the expression U is equal to, we must consider the state-
ment of the problem. We will take an umbrella (U “ 1) if either or
both of the following conditions are true: (1) it is raining (R “ 1);
or (2) both the weatherman predicted rain (W “ 1) and it is cloudy
(C “ 1). This can be written as:

R OR pW AND Cq

or, in symbols:

R_ pW ^ Cq

If we set U equal to this expression, we have a Boolean equation:

U “ R_ pW ^ Cq

digital logic foundations of computer science 6

As you can see, R, W, and C are input (independent) variables, and U
is the output (dependent) variable. We could write this with U being
a function of R, W, and C:

UpR, W, Cq “ R_ pW ^ Cq

In this book, we will usually dispense with the function notation.
On any particular day, we assign appropriate values to the inputs

to yield the value of the output U. We can show all possible combi-
nations of inputs and the corresponding output using the truth table
shown.

R W C U
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Suppose on one particular day the weatherman predicted rain:
W “ 1. We look out the window and see that it is not raining (R “ 0)
or cloudy (C “ 0). Using these values for the variables, we can look
up the corresponding row in the truth table, in this case, the third
row. We can then immediately see from the output column that
U “ 0, i.e., we do not need an umbrella.

Though easy to use, it is not particularly clear from this truth table
how we arrived at the values for U. To fix this, we can expand our
truth table to include intermediate columns for subexpressions, and
we can also label the output with the entire expression:

R W C W ^ C U “ R_ pW ^ Cq
0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Here, the intermediate column is easy to compute, which helps us
compute U, and it also helps the reader understand and verify our
result.

Expressions can be much more complex than this, of course. For
example, later you will be able to prove that:

R_ pW ^ Cq ” R^ pW ^ Cq

By combining operators, we can come up with arbitrarily-complex
expressions. In fact, we can use Boolean expressions to represent
anything that can be computed.

We should point out two advantages Boolean expressions have
over English (or any other natural language) for representing logical
assertions (and, hence, digital logic). First, Boolean expressions are

digital logic foundations of computer science 7

much more concise than their natural language counterparts. Second,
Boolean expressions are not ambiguous; the same cannot be said for
natural languages. For example, if we say “it is not raining or the
weatherman predicted rain and it is cloudy”, we are not completely
sure whether this means pR _Wq ^ C or R _ pW ^ Cq; these are
different as can be seen in Table 2.

Table 2: See text.
R W C pR_Wq ^ C R_ pW ^ Cq
0 0 0 0 1

0 0 1 1 1

0 1 0 0 1

0 1 1 1 1

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Precedence

Just as in ordinary algebra, there are precedence rules for Boolean
algebra, and they are very similar. Subexpressions inside parentheses
are evaluated first, then NOT, then AND and NAND, and finally OR, NOR,
and XOR.

Logic gates

Boolean logic would not be very useful for us if there were not a
way to implement Boolean expressions in digital logic. Fortunately,
there are electronic devices, called logic gates, that correspond to the
Boolean algebra operators we have just discussed: NOT gates, AND
gates, and OR gates. Input lines (wires) entering the gate represent the
corresponding operator’s operands, and an output line leaving the
gate represents the result. The Boolean values 0 and 1 of the variables
are represented by applying different voltages to the lines. By wiring
the outputs of gates to the inputs of others, we can create a logic
circuit that can compute more complicated Boolean expression—in
fact, we can do this to create the extremely complex circuit that is a
complete CPU.

Figure 1: Generic representation of a
logic gate.

For the most part, we will not worry about how gates are con-
structed (but see Sidebar 1 if you’re interested), their component
transistors, resistors, etc., are below the abstraction level in which
we are interested. Considering them each time we think about gates
would only be a distraction from understanding digital logic. In-
stead, we will almost always treat gates as “black boxes” (see Figure
??) with inputs and outputs, and we will consider the values of the
variables (values on the lines) as being 0s or 1s, not voltages.

To differentiate different gates, we will use different shapes for the
“box”, as we shall see.

Basic gates

We will first look at three basic gates that correspond to the Boolean
operators we have seen. Figure 2 shows the symbols we use to repre-
sent these gates. Their truth tables are, of course, identical to those of
the corresponding operator.

Figure 2: Common symbols for NOT,
AND, and OR gates

digital logic foundations of computer science 8

In the figure, inputs come in from the left and outputs exit on the
right. Of course, the gates can be turned other directions, but the
inputs and outputs will still be in the same relative position on the
gates. The gates shown have at most two inputs and one output. NOT
is a unary gate, while AND and OR are binary gates. Later, we will see
that some gates can have more inputs than this, but for now, we’ll
stick with these.

When we draw circuits containing multiple gates, the gates are
connected by lines that stand for the real wires connecting the cor-
responding electronic devices. When considered at this level of
abstraction, each line can have either the value of 1 or 0.

These three gates form a functionally completeset of gates that can
be the basis for digital logic. That is, the operations NOT, AND, and
OR are sufficient to implement any Boolean algebra expression and,
hence, any logic circuit.

Other gates

There are gates other than NOT, AND, and OR that are important for
computers. The three we will mention here are NAND, NOR, and XOR.

1. NAND

The OR gate outputs a 1 if at least one of its inputs is true. Some-
times, we may want to determine if at least one of two inputs
variables is false instead. For this, we can use a NAND gate.

NAND means “not and”, and it indeed is the same as if we were to
combine the two Boolean operators (or gates) NOT and AND. The
truth table and symbol for NAND are:

Note that this is precisely the same truth table as you would get
for the expression AB, as you would expect. Also note that the
symbol for NAND looks very similar to the symbol for AND except for
the little circle on the left. As we will see later, a small open circle
like this is another way to indicate negation (i.e., NOT).

Sidebar 1: What are gates, really?

digital logic foundations of computer science 9

We have so far treated gates as black boxes that compute Boolean functions.
But what are they? That is, how are they implemented as electronic circuits?

Gates are composed of transistors. (Older gates were built from vacuum
tubes.) A transistor is a semiconductor device that is able to act as (among
other things) a switch. It has two inputs and an output, the collector, base,
and emitter, respectively, as shown to the right.

When no voltage is applied to the base, there is no current flow from the
collector to the emitter. When a small voltage is applied to the base, current
flows from the collector to the emitter.

The simplest logic gate is the NOT gate, which can be created with a single
transistor, as shown at the right. When input A has no voltage, representing
logical 0 (false), then no current flows through the transistor. Consequently,
no current flows through the resistor (the squiggly line above the transis-
tor), either. Although we won’t go into it in more detail, this means that
there is no voltage drop across the resistor, and so the voltage at output
F is the same as Vcc (which is called the common collector voltage, which
represents a logical 1 [i.e., true]). If we apply voltage to A, representing
A “ 1, then the transistor is switched on, and the voltage at the output F
will be 0, the same as ground (represented as the triangular set of lines at
the bottom of the figure), which is logical 0. Thus when A “ 1, F “ 0 and
vice versa, so the circuit represents A.

A NAND gate can be constructed by putting two transistors in series, as
shown at right.that is, with the emitter of one hooked to the collector of the
next. The two inputs of the NAND gates are then connected to the bases of
the transistors.

Here, current only flows to ground, and hence, F is only 0, when both tran-
sistors are switched on—that is, when both A “ 1 and B “ 1. If either is off
(0), then there is no current through that transistor, and hence no current
to ground, which means that there is no voltage drop across the resistor,
and the output will be 1. This is of course the definition of AB. One of the
exercises asks you to design a NOR gate using transistors.

collector

base

emitter

Vcc

F

A

Vcc

F

A

B

Just as there are several ways to write the AND operator (×, ^,
juxtaposition), there are several ways to write NAND as well in
Boolean expressions, for example: A NAND B, A|B, A Ò B, or just
AB.

NAND has the interesting property that it by itself is functionally
complete, i.e., any Boolean function can be computed using only
NAND operators/gates.

digital logic foundations of computer science 10

2. NOR

The NOR gate is to OR as NAND is to AND: i.e., its negation. NOR stands
for “not or”, and the gate outputs a 1 only if both of its inputs are
0. Its truth table and symbol are:

We can see that A NOR B ” A` B. Again note the similarity
between the NOR and OR symbols and the presence of the circle
indicating negation. NOR is also functionally complete by itself, as
discussed in Sidebar 2.

We can write NOR in Boolean expressions several different ways, for
example, A NOR B, A´ B, or pA` Bq.

Sidebar 2: Complete operator sets: NOR

We claim in the text that either NAND or NOR can do the work of NOT, AND, and OR. One way to prove
this is to prove that, say, NOR, by itself can be used to compute OR, AND, and NOT. If we can do that,
then since those three gates can implement any Boolean function, we will have shown that NOR, can,
too.

The easiest to implement is NOT. This can be done by NOR’ing a variable with itself. Thus, we claim
that:

A ” A NOR A

This can be proven simply, by using a truth table:
A A NOR A A
0 1 1

1 0 0

Here, we see that the last two columns are identical. This means that the two corresponding func-
tions, A NOR A and A are functionally equivalent, which proves that we can implement NOT with NOR.
We will have more to say about functional equivalence in Chapter ??.

Implementing the other two gates with NOR is somewhat more complicated. For example, for OR,
it seems intuitive that we should be able to compute, say, A NOR B, then negate that to get A` B,
that is:

A` B ” pA NOR Bq

digital logic foundations of computer science 11

which, using the prior identity to replace the NOT, becomes
A` B ” pA NOR Bq NOR pA NOR Bq

Let’s use a truth table to see if our intuition is correct:
A B A NOR B A NOR Bq A` B
0 0 1 0 0

0 1 0 1 1

1 0 0 1 1

1 1 0 1 1

Comparing the last two columns, we see that our approach does indeed work.

Finally, let’s see if we can perform AND using only NOR. In Chapter ??, we will see how to derive the
expression we need. Here, we will simply state that: AB ” A` B.

Now, A` B is just another way to write A NOR B, so AB “ A NOR B.

The truth table that proves this is:

A B A B A NOR B AB
0 0 1 1 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 0 1 1

Since we already know how to compute A using only NOR, we’re all set.

Thus we have shown that NOR is a sufficient basis for digital logic all by itself. Something similar
can be done to show that NAND is sufficient, as well.

The circuits corresponding to the above expressions are:

A A

NOT

A

B
A+B

OR

A A

B B

AB

AND

3. XOR

The final gate we will discuss is the XOR, or exclusive or, gate. Re-
call that when we introduced OR, we mentioned that it was the
“inclusive or”: it is true whenever either or both of its inputs are

digital logic foundations of computer science 12

true. XOR, on the other hand, is true when either of its inputs, but
not both, are true. It is thus more closely related to what we mean
when we use “or” in English: if we say “Mary or Dave is driving
the car”, we would be very surprised to see them both driving the
car simultaneously!

The truth table and logic gate symbol for XOR are:

Because of its similarity to OR, the symbol for XOR is ‘. Thus, we
can write it in a Boolean expression as A‘ B or A XOR B.

As we will later see, XOR is useful in constructing adders, and it
should be easy to see that we can create an “equals” function by
combining a NOT gate with an XOR gate. (If that’s not apparent, see
Sidebar ?? in the next chapter.)

Truth tables, revisited

We’ve seen quite a few truth tables so far, but although you may
have noticed some common patterns in them, we have not yet said
how to go about constructing them. We know we need all possible
combinations of inputs, but we haven’t yet seen how to make sure
that is the case, or how to order the rows.

Let’s first note that if we consider for a moment the input values
themselves, then each row can be seen as a row of as binary digits
(bits). Each row of inputs can then be thought of as a binary number.

As introduced in the previous chapter, a binary (base-2) number
is one in which each digit is a 0 or a 1, rather than 0–9, as in decimal
(base 10) numbers. We’ll talk much more about binary numbers
in Chapter . For now, we will just introduce them enough for our
present purpose.

As with the more familiar base-10 (decimal) number system, the
least-significant digit is on the right, while the most-significant digit
is on the left. When we count in base 10, the least-significant digit
varies fastest, then the next most-significant digit, and so on:

000, 001, 002, 003, . . ., 009, 010, 011, . . ., 099, 100, 101, . . .

This is the same when counting in binary, except the only dig-
its we have to work with are binary digits (bits), which only have
two possible values, 0 and 1 (unlike decimal digits, which have 10

possible values). Counting in base 2, then, looks like:

digital logic foundations of computer science 13

000, 001, 010, 011, 100, 101, 110, 111

Note that the least-significant digit changes fastest, as before.

Sidebar 3: Exponential growth

It is important to realize how rapidly something increases when growing exponentially. While it may
not seem very fast—for example, with 6 inputs, we still need only 64 rows for a truth table—after a
little bit, exponential growth yields some very impressive numbers. If a truth table has 10 inputs, 210 “

1024 rows are needed; with 20 inputs, 220 “ 1, 048, 576 rows. With 80 inputs—a very large circuit,
we must admit—we would something on the order of a row for every atom in a mole of an element:
a row for every atom in, for example, a 60 carat diamond (about one and a third times the size of the
Hope Diamond), or in about 22 liters of a gas.

For an example from the physical world, suppose you make a deal with your boss that you will be
paid only an atom of gold for the first month, doubling the amount each month. After a year, you would
be rather poor, of course, with only 4096 gold atoms for your 12th month—so you had better have some
other source of income! After even five years, your monthly income would be up to a barely-measurable
third of a milligram. When you begin year seven, you would be paid about 3 g of gold your first month,
worth about $3000 at the time of this writing; the year would end much better, though: the last month
of that year, you would be paid about 6 kg of gold—worth about $6 million. Pretty good, eh? But: If
you were to work for 13

3
4 years, then your boss would owe you a chunk of gold that weighed about

a third more than the Earth. After a little over 15 years, he would owe you one as massive as the sun.

Why is understanding exponential growth important for computer science? One common place it oc-
curs is when analyzing how long a program would take to solve some problem. The running time,
for interesting and useful problems, often grows exponentially as the number of inputs increases. Some
problems also take exponentially more memory as the size of their input increases.

To see how exponential growth in running time can impact a program’s performance, consider a sim-
ple, hypothetical game in which at any point, there are two possible moves, and at some point, there
is a winner. If we diagram the possible moves, we end up after two moves with something like the
tree shown here:

That is, the number of possible resulting boards after two moves is 4, or 22. The tree of possible moves
grows exponentially; after n moves, the number of possible boards produced is 2n.

Suppose we want to have a game-playing program examine all possible moves until it finds a winning
board position. If the winning board is only 20 moves into the game, there will be 220 “ 1, 048, 576

digital logic foundations of computer science 14

boards at the “leaves” of the tree. The total number of boards that will have to be looked at will be
1` 2` 3` 4` ...` 1, 048, 576 “ 20 ` 21 ` 22 ` ...` 220. It turns out that 20 ` 21 ` 22 ` ...` 2n´1 ` 2n

is equal to 2n ´ 1, so the total we have to examine for 20 levels is 221 ´ 1. More generally, to look for
a goal at depth n in the tree, we have to look at most at 2n`1 ´ 1 boards.

While a million or so boards might seem like a lot, if we can examine even one board per microsecond—
which is not unreasonable—then it only takes around a second to look for an answer. However, if the
winning board is reached only after 40 levels, then it would take the computer just over a million sec-
onds to look for a goal. That is, about 13 days. If the game takes 80 moves to produce a win—possible
in games such as chess, for example, which also has more moves to consider at each choice point—
then it will take our computer something like 38 billion years to search the tree for a win; for compar-
ison, the universe has been around for “only” something like 13.8 billion years.

Now let’s consider a truth table with three inputs, A, B, and C,
and one output, F. The convention is that we consider A, B, and C as
binary digits comprising a single binary and number order the rows
by increasing value of that number, as shown in the margin.

A B C F
0 0 0 x0

0 0 1 x1

0 1 0 x2

0 1 1 x3

1 0 0 x4

1 0 1 x5

1 1 0 x6

1 1 1 x7

We do not specify values for F, since we’re not concerned with
them here. Note the patterns as you read down the columns; this
should give you a good sense of what we mean by less-significant
digits varying faster than more-significant digits. Note also that every
possible combination of values for A, B, and C is represented as a
row in the truth table.

The number of rows in a truth table depends only on the number
of input variables. This can be understood by realizing that there has
to be as many rows as there are combinations of values of the input
variables. For a single variable, there need only be two rows, since
there are only two values the variable can have (see the truth table for
NOT, e.g.). For two variables, for each value of one of the variables, the
other variable can also have one of two possible values; thus, there
need to be 2ˆ 2 “ 4 rows (see the truth tables for AND, OR, etc.). For
three variables, we have 8 rows, as the truth table above shows.

Thus for every additional variable, the size of the truth table
doubles. If we have n variables, then since each variable can take on
one of two values, we have 2n combinations, and thus need 2n rows.

This is an example of exponential growth, which we will see a
lot in computer science. Exponential growth makes numbers get
surprisingly big very quickly. (See Sidebar 3.) This makes creating
truth tables for many variables impractical. For example, with 10

variables, we need 210 “ 1024 rows. For 20 inputs, we need 220 “

1, 048, 576 rows, and for 30 inputs, we would need over a billion rows.

digital logic foundations of computer science 15

Abstraction

One thing that we should mention before we finish the chapter is the
very important idea of abstraction. Abstraction is used to hide details
that would otherwise get in the way. We say that the details have
been “abstracted away”. We have seen an example of this already:
we talk about gates, not transistors and resistors, in order to focus
our thinking on digital logic and avoid thinking about the minutiae
of electronics. Abstraction is a theme that runs throughout the book
because it runs throughout computer science itself.

The usefulness of abstraction may be made clearer by two non-
computer science examples. First, consider an automobile. We can
think of the car in many different ways. It is a mode of transportation
and can be thought of solely in those terms, say when we are plan-
ning a trip. It is also a large physical object and can be thought of as
such when we are considering whether or not it will fit in a parking
space. It is a collection of systems—the electrical system, the engine,
the brakes, etc; we think of the car in these terms when something
goes wrong, and this is the abstraction level that mechanics use. Each
of these systems is itself made up of parts, too, and we may have
cause to think of them. We could carry this process down to the
level of atoms or even subatomic particles, although these low-level
abstraction levels would not likely be of much use on a day-to-day
basis!

The second example is the way a doctor might view a person.
At the highest level of abstraction, the doctor might view the pa-
tient as a whole person with some set of complaints (e.g., pains, a
cough, etc.). Going a level down in abstraction, the doctor can think
about the body’s systems, such as the respiratory, gastrointestinal,
or circulatory systems. Each of these is composed of parts (organs),
and the doctor may have cause to think of the patient at this level
of abstraction: the stomach, intestines, liver, and so forth, instead of
the GI system. Each organ is composed of tissues, and the doctor
might need to think of the patient at that level, too: if the patient is
diabetic, for example, the doctor might have to think of the patient’s
pancreas islet cell tissue (or lack thereof). There may be cause to go
into even more detail, perhaps when thinking about some genetic
disease (caused, perhaps, by a mutation in the DNA in the cells) or
by some other malfunction of a macromolecule. Again, going further
may not be reasonable, since most things in medicine occur above the
level of individual atoms.

Why do we think of cars and bodies at various levels of abstrac-
tion? Think how hard it would be to keep all the details in mind if
we were to think about a car as a collection of individual parts, much

digital logic foundations of computer science 16

less as a collection of atoms. Not only that, but even if we could keep
all the details in mind, it would be difficult if not impossible to focus
on what is important for the task at hand. In addition, there are sys-
tems properties that are not attributable to any particular component,
but that arise from the components’ properties and interactions in the
aggregate. There is no “digestion” ascribable to the stomach, small
intestine, etc., but rather it is a property of the GI system as a whole;
stopping is not a property of any particular piece of the brake system
of a car, but instead is a property of all the parts working together.

In computer science, we need to think about computers at many
different levels of abstraction at different times. Computers are in-
credibly complex machines, and it would be extraordinarily difficult
always to think about a PC, for example, as a collection of gates.
Software is similarly complex, and so we do not usually think of a
program as its component 1s and 0s, even though that is what it is at
one level.

We will see the various abstraction levels involved in computers
throughout the book. Here, we just introduce them to provide an
overview and a hint at what lies ahead.

The lowest level we need to be concerned with in computers is
very low indeed: the quantum, or subatomic particle, level. The in-
formation stored on disk drives, for example, is becoming so densely
packed that quantum effects have to be considered, even where quan-
tum mechanics is not needed to design the storage mechanism itself.
Luckily, in computer science, we seldom find ourselves at this level.

We can call the next level the electronic level. Here, we are con-
cerned with voltages and currents. The components at this level are
resistors, capacitors, coils, batteries or other voltage sources, and, of
course, the ubiquitous transistors. If we understand these electronic
devices, we do not have to worry about quantum mechanics, the ma-
terials the devices are constructed from, or the way their components
(if any) are connected. Instead, we can treat them as black boxes with
well-defined inputs, outputs, and other properties, and we can hook
them together using just this information to construct what we need.

Gates, the next level up, are composed of these electronic compo-
nents. However, if we understand the gate’s relationship between its
inputs and outputs, then we can ignore how they are constructed and
concentrate on their function—that is, we can treat gates, too, as black
boxes, thus hiding the details of their electronic components—as we
have done in this chapter.

In computers, gates are combined to create functional units, such
as adders (Chapter), registers (Chapter), memory, and control units.
This level of abstraction is closer to the kinds of things we need
to think about when designing and using a computer than gates

digital logic foundations of computer science 17

themselves, and we can treat functional units, too, as black boxes that
can be used and interconnected as desired.

Functional units are combined to create larger modules, such
as the computer’s arithmetic logic unit (ALU), its control unit, its
register unit, etc. (see Chapter). These larger functional units give us
more capable black boxes from which we can build or think about
computers.

The computer is comprised of units at the next level: the central
processing unit (CPU), memory, and input/output devices.

Computer scientists similarly use abstraction when thinking about
or designing software. Levels here might start with the firmware or
microcode that controls the internal operation of the CPU, but often
this is considered part of the hardware. Software pretty much starts
at the machine code level, which provides the instructions the com-
puter is capable of carrying out. The assembly language level is next,
which is basically a more human-friendly version of the machine
language level. Above this might be the view a user program has of
the machine and its operating system. User programs are (or should
be!) themselves composed of objects or modules, which may be
hierarchically organized into larger and larger modules.

We will call your attention to abstraction again and again through-
out the book.

Summary

In this chapter, we have introduced digital logic, truth tables, and
gates. We have seen the correspondence between gates and Boolean
operators, and we have seen how to specify the behavior of an opera-
tor/gate using a truth table.

In the rest of this part of the book, we will look at digital logic
in much more detail. First, we will delve more deeply into Boolean
algebra, which is a way of specifying the function we would like
a digital logic circuit to perform. We will see ways to prove that
one function/circuit is functionally equivalent to another, which is
something necessary if we are to minimize the number of gates and
inputs a circuit has.

After that, we turn our attention to digital logic circuits themselves
and see how we can create a circuit based on either a Boolean algebra
function or a truth table. Then we will see one particular way to
minimize circuits that is much easier than using Boolean algebra
directly.

The final two chapters in this part of the book will look at the two
types of logic circuits, combinational and sequential. For each, we
will see an important example for computers (adders and registers,

digital logic foundations of computer science 18

respectively), which will be good preparation for the next part of the
book on computer architecture.

Review

Further reading

Exercises

1. Make a table showing how many rows a truth table will have for i
inputs, where i goes from 1 to 10.

2. The Boolean function A‘ B is equivalent to A “ B. Draw the truth
table for the function and argue that this is indeed the case.

3. A state-of-the-art 2012 CPU chip, the Intel Core i7, has over 1300

inputs. If we assume that each of these is a logic input (i.e., has
two values), could we realistically create a truth table for this chip?
Explain your answer.

4. How would you use only ^, _, and not to compute A‘ B?
5. Show how the operators ^, _, and not can be computed using

only nand gates.
6. (Difficult.) We showed in Sidebar 1 how a nand gate could be

implemented using two transistors. Can you design a nor gate,
also using only two transistors?

	What is digital logic?
	Logic gates
	Truth tables, revisited
	Abstraction
	Summary
	Review
	Further reading
	Exercises

