
A Very Brief, Incomplete History of Computing
Foundations of Computer Science

E.H. Turner and R.M. Turner
2017-05-24.1

[Note: This is a somewhat incomplete chapter at this time; sorry about that. There is a plethora of informa-
tion on the Web, however, if you don’t see what interests you here.]

In the beginning. . .

No introductory textbook would be complete without some history
of the field it introduces. Here, we give a brief, incomplete, and
very informal history of the field. There are better sources for more
complete histories; we will provide links to them in the “Further
Reading” section of this chapter.

In one sense, since computing at its root is problem solving, the
history of computing is very old—in some sense, as old the time
when the first person told another the first informal algorithm for
accomplishing some task, perhaps tanning hide or lighting a fire.
The first computing devices were as simple as paper and pencil (or
papyrus and brush, as the case may be) and, later, the abacus.

Figure 1: Programming ENIAC [US
Army photograph]

Aside from that, however, we can trace the true beginnings of the
field to mid-1800s, when Charles Babbage and Ada Lovelace were
working on the difference and analytical engines. In a very real sense,
Ada Lovelace was the first computer programmer; she was interested
in how one would specify algorithms for the analytical engine to
solve problems. In fact, she was even interested in how chess might
be played. She was so influential that a programming language, Ada,
is named after her.

Electronic digital computers

The field’s formal and practical foundations began to be laid in
earnest in the 1940s with seminal work by Claude Shannon, Alan
Turing, John von Neumann, and others. The basics of the kinds of
computers that have reigned since (digital stored program computers,
sometimes called von Neumann machines) were developed during
this time, and fundamental properties of information (Shannon)
and computing (Turing) were explored. Alan Turing proposed a
formal, abstract machine, now referred to as a Turing machine, that
is equivalent to a computer and that can, it is thought, compute
anything that is computable. (Not everything is, it turns out.)

a very brief, incomplete history of computing foundations of computer science 2

Beginning in the 1940s, but especially in the 1950s and 1960s,
practical computing machines were developed; the term “computer”
came to mean these machines, whereas in the past it referred to a
person who did computations. In 1946, the first general purpose
computer was built, called the Electronic Numerical Integrator and
Computer (ENIAC), shown in Figure 1. It was designed by John
Mauchly and J. Presper Eckert. Unlike the computers that most of us
have in our pockets—smartphones—ENIAC was 8 by 3 by 100 feet in
size and weighed about 27 tons.

As can be seen in the photograph, programming ENIAC was not
like programming computers today. It was not a stored program
computer. Programs would be entered via a combination of cables
to hook functional units of the computer together and “portable
function tables” into which tables of numbers could be entered.
Most of the programming was done by six women, who were later
inducted into the Women in Technology International Hall of Fame.

Like some of its successors, ENIAC was one of a kind. Even
though it was general-purpose, it was still built for a particular
application (military calculations), and it was very expensive. It was
followed shortly by true stored-program computers, but it wasn’t
until the 1950s that computers became more like products for sale,
albeit still at a steep price.

One of the most successful computer companies was IBM (In-
ternational Business Machines). IBM had been a long-time player
in the business machines field, and in the early 1950s, entered the
nascent computer business with their 700-series computers (see Fig.
fig:intro:704). The first of the series, the IBM 701, was for scientific
use and was introduced in 1952. Their (slightly) later computer, the
IBM 702, was for business purposes. There were two, since it was
thought that the needs of science and business were sufficiently
different to warrant it. Scientific computing needed numerical opera-
tions, typically floating point (approximations to real numbers), while
business needed to process text and to deal with decimal numbers
(dollars and cents, e.g.; and decimal, since roundoff and other errors
from floating point calculations could not be tolerated).

Figure 2: IBM 704 electronic data pro-
cessing machine. [NASA photograph]

Stored programs

Up until this time, computers had been programmed mostly either
by rewiring them (e.g., ENIAC) or, more commonly by this time, by
entering binary machine language programs into the computer, either
directly, with switches, or in some other manner. Programs written
in binary are just strings of 1s and 0s. Consequently, they are very
difficult for humans to read, and they are prone to errors when being

a very brief, incomplete history of computing foundations of computer science 3

written or toggled into a computer via switches. Although a com-
puter can only understand 1s and 0s, a more human-friendly method
of representing programs was developed, called assembly language
(see Chapter). Each instruction in an assembly language (which is
usually specific for a given machine) corresponds to an instruction in
the computers binary machine language, but uses mnemonics rather
than binary digits. For example, whereas the machine instruction for
adding two numbers together, each contained in a register (a storage
location), might look something like:

0001 0000 0000 0110

the equivalent assembly language instruction might look like:

ADD R1,R2

Since a computer cannot directly understand assembly language, a
special program, called an assembler must first translate the assembly
language program (called the source code) into a machine language
program (called the object code). This, after some additional process-
ing to edit in links to library programs and so forth, then becomes an
executable file, or just executable, that can be loaded into the computer
and run.

Assembly language greatly increases the ease of programming,
but programs written in assembly language are still very low-level
and tailored toward the machine (i.e., the computer) rather than to a
person’s way of thinking about a problem. In the late 1950s, however,
researchers began to develop high-level languages, languages much
closer to human languages. In a high-level language (HLL) program,
each line might represent several to several dozen assembly language
lines. For example, a HLL statement such as:

Y = 2*X**2 + 3*X - 7

would set a variable Y to the value 2x2 ` 3x ´ 7, where X is another
variable. The equivalent assembly-language program would do this
with statements various multiplication, addition, subtraction, and
storage statements, e.g.,

LD R1,X ;put X in register 1

LD R2,X ;put X in register 2

MUL R1,R2 ;R1 <- R1 * R2

MUL R1,#2 ;multiply it by 2

MUL R2,#3 ;multiply X (in R2) by 3

ADD R1,R2 ;add the first two terms

SUB R1,#7 ;subtract 7

ST R1,Y ;store result

a very brief, incomplete history of computing foundations of computer science 4

The first HLL that saw any sort of widespread use was a scientific
language, FORTRAN. The name FORTRAN stands for for FORmula
TRANslation. As the name indicates, the focus was on quickly per-
forming calculations. This language—which is still in use, by the
way!—revolutionized the way people interacted with computers.

A bit later, COBOL, a high-level language for business-oriented
computers, was invented by Grace Hopper and others. The name
COBOL stands for COmmon Business-Oriented Language. COBOL
is more concerned with moving and manipulating data than in
numeric calculations, although it can do that too, of course, just
as FORTRAN can manipulate text. It is an extremely verbose and
English-like language, meant, in part, for non-specialists to be able
to use. COBOL, too, is still around and in used; by some estimates,
it is the language with the most lines of code written in it of all the
programming languages in the world.

In between these two was a third language, developed not for
numerical or text calculations, but for artificial intelligence: LISP (LISt
Processing language), developed by John McCarthy. LISP (or Lisp, as
we will write it in this book) was radically different from these other
two “imperative” languages. Whereas a program in an imperative
language is like a recipe, telling the computer what to do, a program
in a functional language like Lisp instead applies functions to data
and other functions. Lisp’s data reflects its original purpose as an AI
language: it includes symbols and lists which can simplify dealing
with symbolic information (e.g., a sentence in English). Lisp, too, is
still in widespread use.

Figure 3: IBM System/360 (By Jordifer-
rer (Own work) [CC BY-SA 3.0])

Just a little later, a very influential language, ALGOL, was devel-
oped. This language, which influenced virtually all imperative and a
good many object-oriented languages following it, was itself not used
much. However, from it came many innovations that are still in use
in a wide variety of modern languages.

The 60s: Mainframes

About the start of the 1960s, IBM created a family of computers with
the aim of unifying the two types that had come before, scientific
and business-oriented. This was the IBM 360 family of machines,
probably the most successful series of general-purpose computers
of that era (Figure 3). The instruction set—the set of operations a
computer can carry out—for the 360 family included both scientific
and business-oriented operations. In addition, an innovation was that
a customer could buy a computer that fit his or her needs, since there
was a family of machines of varying abilities. A program developed
for one computer in the family would run on any of the others, and

a very brief, incomplete history of computing foundations of computer science 5

so a customer could upgrade his or her computer without having to
rewrite code.

New versions of FORTRAN and COBOL continued to be in
widespread use in this era of computers, but other languages were
emerging, as well. Other special-purpose languages were also de-
veloped, for example, Simula (simulation), SNOBOL (string manip-
ulation), APL (mathematics), and RPG (business). Simultaneously,
general-purpose languages were arising, such as ALGOL, which laid
the groundwork for many modern programming languages, and
PL/I, which aimed to combine the best features of FORTRAN and
COBOL (among others). BASIC, a language created for ease of use
and heavily used in education (and the forerunner of many other
versions, including Visual Basic), was created during this era as well.

Figure 4: IBM System/370-145, ca.
1974 (from Wikimedia Commons, user
Oliver.obi, Creative Commons BY-SA
3.0 license)

In 1970, the next major family of IBM mainframes was introduced:
the IBM System/370 family (Figure 4). This brought innovations such
as virtual memory (see Chapter) and provided an upgrade path for
users that was backward-compatible with the System/360 family and
that would would continue for almost two decades.

Other mainframes were on the stage as well, including Digital
Equipment Corporation’s (DEC’s) DECsystem-10 (also referred to
as PDP-10 or DEC-10), and Control Data Corporation’s CDC 6600

and Cyber computers. The DEC-10 was very common in academic
computing and which was often used for time-sharing—that is,
letting multiple interactive users share the machine at the same time.
It was also very important in the construction of ARPANET, the
forerunner of the Internet.

There was a wealth of programming languages in the 1970s. FOR-
TRAN and COBOL continued to be major players, as did PL/I,
BASIC, and Lisp (in artificial intelligence). Pascal, Niklaus Wirth’s
language based on ALGOL, began to be widely-used to teach pro-
gramming in the mid-1970s. Dennis Ritchie created the C program-
ming language about this time, as well, at Bell Laboratories. Not
only is C still an extraordinarily important programming language,
it was and is the language in which Unix and Unix-like operating
systems (e.g., Linux) are written. It is also the basis of object-oriented
languages such as Objective C, C++, and C#, and its syntax has
influenced many other languages, including Java and JavaScript.

The number and kind of operating systems also diversified about
this time. Operating systems, which we will cover in more detail
in Chapters –, are programs that are responsible for managing the
computer’s resources, ensuring that users’ programs run, providing
services for those programs, and so forth. IBM continued its OS/360

operating system in this era as OS/MVS and VM/CMS, which was
one of the first virtual machine operating systems in widespread use.

a very brief, incomplete history of computing foundations of computer science 6

(A virtual machine OS is one that lets users have their own virtual
copy of the hardware, on which they can run other operating system.)
DEC had their own operating systems for including TOPS-10 and
TOPS-20 (Timesharing/Total Operating System) for their mainframe
computers, the DEC-10 and DEC-20.

Figure 5: A PDP-8: serial #85, delivered
to the University of Iowa in 1966.
[Douglas W. Jones, via Wikimedia
Commons]

Mid-60s–70s: Minicomputers

The minicomputer era began in the mid-1960s, ushering in cheaper
computers that, while not inexpensive enough for home use, made
dedicated laboratory and computer science department computers
feasible. The most successful of these early machines was DEC’s
PDP-8 minicomputer. It was about the size of a large storage cabinet
or refrigerator, which was small for computers at that time. There
were more PDP-8 computers sold than any other computer up to that
time.. They were considered inexpensive compared to mainframes,
costing $18,500 initially (equivalent to more than $140,000 at the time
of writing).

Originally, there was no operating system for the PDP-8. Instead,
an initial program could be entered using the toggle switches on
its front panel, one 12-bit word at a time, in binary. This “bootstrap
program” would be sufficient to allow other programs to be read into
the computer via a keyboard or paper tape.1 Later, simple operating 1 The initial program for a computer

is called the “bootstrap program”
because it allows the computer to “pull
itself up by its bootstraps”, as the old
saying goes. This is the source of the
terms “boot program”, “booting the
computer”, etc.

systems were developed for PDP-8 models.
DEC followed their success with the PDP-8 with the PDP-11

minicomputer (Figure fi:history:pdp-11), which was possibly the
best-selling minicomputer ever. It ran a variety of operating systems,
including DEC’s version of Unix, called Ultrix. The PDP-11 was fol-
lowed up by DEC’s VAX-11 (Virtual Access Extension) minicomputer
in the mid-1970s. The VAX minicomputers ran DEC’s own VMS
operating system, but versions of Unix were ported to it as well.

Figure 6: A PDP-11/70 minicomputer.
[Joe Mabel, via Wikimedia Commons,
CC-BY-SA 3.0]

The 70s–80s: Workstations

Another term for high-end computers meant primarily for single-
person use is workstation. Early workstations were generally powerful
minicomputers for scientific uses, such as Sun Microsystems Sun and
SPARCstation workstations (see Figure 7). This term continues to be
used for powerful microprocessor-based computers.

Some early workstations were special-purpose machines. For
example, Evans & Sutherland’s PS 300 (see Figure 8) was one of
the first computer graphics workstations, and Lisp machines were
produced by several companies (e.g., Texas Instruments, Symbolics,
and Xerox) for artificial intelligence and other research (see Figure 9).

a very brief, incomplete history of computing foundations of computer science 7

The 70s–present: Microcomputers

The 1970s also saw the first microcomputers. These are small comput-
ers whose central processing unit (CPU) is a single chip, the micropro-
cessor, as opposed to the multiple components used in minicomputer
and mainframe CPUs. The first microprocessors were not very pow-
erful; most were 8 bits, and some were only 4 bits, and they only
operated at a rate of a few hundred thousand operations per second.
(Compare that to modern microprocessors, which can operate at the
rate of billions of instructions per second.) However, they were cheap
enough to be popular with hobbyists.

Figure 7: A Sun-100 workstation. [Peter
Dieth, via Wikimedia Commons, CC-BY-
SA 3.0]

Figure 8: An Evans & Sutherland PS
300 graphics workstation. [From a tweet
by @ESDigistar (Evans & Sutherland
Twitter account), December 31, 2015]

Figure 9: Symbolics 3640 Lisp machine.
[Michael L. Umbricht and Carl R.
Friend (Retro-Computing Society of RI)
via Wikimedia Commons, CC-BYSA 3.0]

Microcomputers are not just a historical curiosity. Today’s personal
computers are microcomputers, though the term has fallen out
of favor. The Apple II line of computers began in the late 1970s
microcomputer era and were some of the earliest “home computers”
as well as some of the first microcomputers to see widespread use in
business and (especially) education. Other home computers, such as
the PET and the TRS-80 from Radio Shack, were also in widespread
use. In 1981, IBM introduced their take on the microcomputer/home
computer, called the Personal Computer (PC). The PC inspired many
“clones”, resulting in widespread availability of PCs (in the generic
sense) and a dominance of the microcomputer market for Microsoft’s
operating systems. The rest, as they say, is history.

Operating systems on microcomputers varied widely, including
CP/M, MS-DOS (Microsoft’s disk-operating system for PCs, loosely
derived from Unix), and Apple DOS. Later PCs were able to run ver-
sions of Unix (including Apple’s A/UX, IBM’s AIX, and, eventually,
Linux) as well as the two major divisions of PC (in the modern sense)
operating system, Microsoft Windows and Apple MacOS.

Resurgence of mainframes

The need for mainframes as shared programming platforms de-
creased over time as workstations and personal computers gained
widespread adoption, with some of the smaller computers rivaling
(or even exceeding) the raw processing power of mainframes. How-
ever, mainframes excel in handling large amounts of data, and so
there has always been a demand for them, especially in business and
other applications needing fast access to large databases. Mainframes
align well with the recent burgeoning interest in data mining and ma-
chine learning. Some offer specialized hardware and optimizations
for various purposes. For example, the newest (at the time of writing)
IBM mainframe, the IBM z14 (Figure 10) has: hardware-assisted en-
cryption; special instructions to help with decimal-based calculations

a very brief, incomplete history of computing foundations of computer science 8

(e.g., for currency-related transactions in COBOL or PL/I); virtualiza-
tion performance enhancements for running Linux virtual machines;
garbage collection hardware enhancements to support Java programs;
a compression co-processor for database indices and data; dedicated
I/O processors (traditional in mainframes); and the ability to have up
to 32 terabytes (TB) of main memory.

Figure 10: IBM z14 mainframe (from
www.ibm.com/us-en/marketplace/z14)

Figure 11: The Wikimedia Foundation
servers. [Victor Grigas via Wikimedia
Commons, CC-BYSA 3.0]

Figure 12: The Cray XC50 supercom-
puter. [from Cray, Inc. (cray.com)]

Servers

The idea of a server has a long history in computer science. Servers
are computers that do just that: provide services to other computers
or users. A file server, for example, stores files for use by a group
of computers and users, a compute server provides the service of
running programs or parts of programs for other computers, Web
servers provide Web pages, and so forth. Special-purpose servers,
especially with the advent of the Web, have become a very large
segment of the computer market.

Although a server can in principle be any kind of computer, most
servers currently are special-purpose computers designed to be rack-
mounted in large quantities. For example, Figure 11 shows a large
number of servers in use by the Wikimedia Foundation to store and
serve their data, including Wikipedia.

Supercomputers

A discussion of special-purpose computers would be incomplete
without mentioning supercomputers. The term supercomputer is
somewhat vague, but in general it means a very powerful computer,
much more powerful than commodity computers, even very pow-
erful mainframes. Very often, a supercomputer is a highly-parallel
computer, i.e., one that can do many operations simultaneously.
Sometimes those operations proceed in lock-step with each other,
with a single operation being carried out by many processing nodes
on many different pieces of data. This is called SIMD, for single in-
struction, multiple datapath. The other type of supercomputer is one
that can perform many different instructions at the same time on
many different pieces of data: MIMD (multiple instruction, multiple
datapath).

Figure 12 shows the current (at the time of writing) flagship super-
computer from Cray, a venerable manufacturer of supercomputers.
As can be seen, these supercomputers are a very large, expensive
machines that are only affordable by sizable companies, research
centers, and the government.

To give you an idea of the power of these machines, let’s look at

https://www.ibm.com/us-en/marketplace/z14

a very brief, incomplete history of computing foundations of computer science 9

the successor to the one shown (a Cray XC50) which is currently
called Shasta. An initial early production model of Shasta is expected
to have a performance of 8 petaflops, with the ultimate peak per-
formance of 180 petaflops. The term FLOPS means “floating-point
operations per second”, and it is used when measuring performance
of computers. A petaflop is 1015 floating-point operations per second.
The current generation of high-end microprocessors used in desktops
and laptops have a performance under 100 gigaflops. This means that
the Shasta is estimated ultimately to be almost 2 million times faster
than the fastest desktop or workstation computer. For comparison,
the XC50 has a peak performance of about 25 petaflops.

Though the highest-performing supercomputers traditionally were
built using special-purpose hardware, newer ones, such as the Cray
XC50 shown, combine special purpose hardware with common off-
the-shelf (COTS) hardware, in this case, the microprocessors in the
Intel Xeon family.2 At least low-end supercomputer performance can 2 This is not to say that COTS = inex-

pensive. Xeon processors can cost up to
$10,000 each at the current time.

be achieved also by combining commodity computers, for example,
desktops, in a cluster. A Beowulf cluster is one such cluster computer
that uses desktop computers, a Unix-like operating system, and
a local-area network to achieve very high parallel performance
compared to its components.

Before leaving the topic of supercomputers, we should note that
yesterday’s supercomputer performance is today’s commodity-level
computer performance. Today’s gaming systems, for example, all
have performances in the low teraflop (10

12 flops) range, which
means that they are roughly equivalent to the ASCI Red supercom-
puterr, the fastest supercomputer in the world in 2000. And the
Apple iPhone 7, which has a performance of between 12 and 87

gigaflops (depending on the benchmark), is roughly as fast as the
fastest supercomputer in the world in 1990..

Mobile devices

Which brings us to the currently ubiquitous computers, mobile de-
vices such as smartphones and tablets. Smart phones have exploded
onto the scene relatively recently, propelled primarily by the Apple
iPhone in 2007, followed by its successors from Apple and a host of
other smartphone manufacturers. Smartphones have a touchscreen
and a high-resolution display, and they tend to run either Apple’s
iOS or the Android operating system (developed by Google), al-
though there are a few others with a (very) minority share of the
market, such as Microsoft Windows phones. The market for tablets
was jump-started with the Apple iPad, first released in 2010. The
tablet market is currently dominated by iPad and Android tablets.

a very brief, incomplete history of computing foundations of computer science 10

Low-cost, single-board computers

We would be remiss without mentioning one other category of
computers, inexpensive computers for hobbyists and low-cost appli-
cations. A dominant example of this is the Raspberry Pi, which is
a very small, very cheap (~$30) computer-on-a-board that includes
everything needed to run (e.g.) a variant of the Linux operating sys-
tem (Raspbian). Figure 13 shows the current generation of this board.
Note that the board includes ports for Ethernet, USB, and connection
via HDMI to a monitor.

Figure 13: The Raspberry Pi 3 model
B. (By Mike Magazine - Own work, CC
BY-SA 4.0).

Summary

In this chapter, we have only skimmed the surface of the rich history
of computing over the short time digital computers have been in
existence. Unfortunately, we have given short shrift to the equally
rich history of computer science itself: the development of the theory,
ideas, and algorithms underlying all of computing, and the many
brilliant men and women who have contributed to the field. We hope
that this brief overview will whet the reader’s appetite to read more
about the field’s history.

Review

Further reading

Exercises

1. We have left out so much of computing history, not to mention the
history of computer science itself. Pick a topic of interest that is
not covered here and write a brief (< 5 page) report about it.

2. The book Hackers, by Steven Levy, talks about the hacker culture
in computer science, in particular, at MIT during the early 1960s.
What did “hacker” mean then? What does the term mean now?
Are there still hackers in the original sense of the term? Do you
agree how the meaning of the word has changed over time?

3. Write a report about Richard Stallman and the Free Software
Foundation.

4. Write a report on the Electronic Frontier Foundation.
5. Like most fields, computer science has a rich history of individuals

who have contributed enormously. Choose one of the following
and write a brief report about them and their contributions to
computer science:

(a) Ada Lovelace
(b) John von Neumann

a very brief, incomplete history of computing foundations of computer science 11

(c) Alan Turing
(d) Niklaus Wirth
(e) Grace Hopper
(f) John McCarthy
(g) Herb Simon
(h) Marvin Minksy
(i) Donald Knuth
(j) Edsgar Dijkstra

	In the beginning…
	Electronic digital computers
	Stored programs
	The 60s: Mainframes
	Mid-60s–70s: Minicomputers
	The 70s–80s: Workstations
	The 70s–present: Microcomputers
	Resurgence of mainframes
	Servers
	Supercomputers
	Mobile devices
	Low-cost, single-board computers
	Summary

