
What is a Computer?
Foundations of Computer Science

E.H. Turner and R.M. Turner

If you are reading this book, it is almost certain you are very familiar
with computers. You probably own at least one (laptop, desktop,
cell phone. . . ), and you likely use them most days, probably for
quite a few hours per day. It is possible, however, to be familiar with
something without really knowing how it works, or even what is
truly is. So what is a computer?

At one level, a computer is a tool. Like any tool, it allows us to
do things better than we could without it, or even to do things we
could not do at all prior to the tool’s invention. Originally, and still
to a large extent, computers augment our ability to do calculations:
whereas we may be able to do one or two mathematical operations
per second, with a computer, we can do billions; by ourselves, we may
be able to laboriously do complex calculations, but with a computer,
it becomes easy; by ourselves, and with pencil and paper, we may be
able to remember quite a few data points, but with a computer, we
can remember a virtually unlimited amount.

Computers do more than math, of course. In fact, they can do
so many things, including controlling things in the real world, that
computers have been called the “universal tool”. We are all familiar
with the myriad things that this tool enables us to do: write papers,
carry hundreds of books in our pocket and read them, talk over
long distances (cell phones, the Internet), listen to music, create
music, watch movies, create movies, play video games, construct
things (3D printers, robots), drive effortlessly (modern cruise control,
autonomous cars), explore other planets and the deep sea, defend
ourselves or attack others (torpedoes, drones), and on and on.

It’s amazing to think that something so flexible, so powerful, at
heart can do so very little: only few dozen basic operations, at most,
and even many of these aren’t truly necessary. The trick, of course,
is that these operations can be done billions of times per second,
and so they can be combined into extremely powerful operations—
programs—that can still be done quickly. Coupled with a computer’s
ability to store vast amounts of information and to interact with the
rest of the world, this makes computers very powerful tools indeed.

Saying that something is a tool still doesn’t really answer the
question of what it is: saying that a hammer is tool for nailing things
doesn’t tell us anything about what a hammer looks like, or even
how it functions. So we need to look a bit harder at what a computer
is.



what is a computer? foundations of computer science 2

Hardware

Computer systems are composed of both hardware, the physical
part of the machine, and software, the set of programs that allow the
computer to do what it does. Hardware is anything that you could
touch; it’s physically there. Software (and data) is generally encoded
as states of hardware: magnetic domains on a disk, or voltages in
memory cells, etc.

When we talk about computer hardware, we usually are talking
about the components that store, transmit, or manipulate data. Other
parts of a computer exist, of course: the case, the screen, the power
supply, cooling fans, and so on, may all be a part of a complete
computer system. But those aren’t really what this book is about.

A computer, in general, consists of a central processing unit (CPU),
memory, communication paths (called buses), input/output (I/O)
interfaces and devices (sometimes called peripherals), and various
electronic chips and circuits to support the operation of these things.

Consider a standard desktop computer. If we open the case, we
will see a collection of computer boards, chips and other electronic
components plugged in or soldered to the boards, and various wires
and cables. There will also usually be several peripheral devices, or
at least their controllers, inside the case, in particular one or more
disk drives.

Figure 1: A motherboard. [Photo:
Rainer Knäpper, Free Art License
(artlibre.org/licence/lal/en/)]

There is one board that the CPU as well as other chips and boards
plug into. This is called the motherboard. Figure 1 shows a picture of
a motherboard, and Figure 2 provides a conceptual view. A mother-
board contains a socket for the CPU, some buses for communication,
some sockets for memory chips or boards containing memory chips,
and sockets into which other boards can be plugged. Two important



what is a computer? foundations of computer science 3

chips are also plugged into the motherboard to control access to high-
speed devices (memory, graphics cards, etc.) and low-speed devices
(disks, the keyboard, etc.). These are referred to as the northbridge and
the southbridge, respectively, and together often referred to as the com-
puter’s chipset. The northbridge chip is directly connected to the CPU
via a high-speed bus (the front-side bus), whereas the southbridge chip
is connected to the northbridge via a slower bus (the internal bus).

Figure 2: A diagram of the parts of
a motherboard. [Creative Commons
license CC-BY-SA, by Moxfyre at
English Wikipedia.]

There are many different kinds of buses and I/O devices. Al-
though we will not discuss these further here, they will be discussed
somewhat in later chapters (e.g., Chapters [[chapter:computer-
architecture]] and [[chapter:buses]]).

The CPU is the heart of the computer system. It is responsible
for controlling all the rest of the computer and for carrying out pro-
grams. We will have much more to say about the CPU in Chapter ??.
Here, we will just mention a few highlights.

In the simplest case, a CPU can only work on a single instruction
at any given time.1 It fetches an instruction from memory, interprets

1 This is not precisely true, even for
the simplest of modern processors,
since they have a /pipeline/ with
multiple instructions in progress at
once, speculative execution of different
branches, and other things we will
ignore for now.

(executes) the instruction to do what it instructs, then repeats—all a
billion-odd times a second. This fetch–execute cycle is at the heart of
what a computer does, and the speed with which it performs the
cycle is key to its power.

Although CPUs used to be rather large and contain many different
discrete components, modern CPUs are single chips, also called
microprocessors. The CPU contains several parts, as we will detail in
Chapter ??, including a control unit, an internal bus, and registers,
which are a kind of very high-speed memory. Most CPUs these days
also contain cache, high-speed memory that helps speed up access to
the main memory. Some CPUs also contain network control circuitry,
on-board graphics processing ability, and other things that are often
relegated to their own chips.

One very important thing in computers is the main memory, often
called RAM (Random Access Memory). Most of us who have bought
computers know something about memory, if nothing else that more
is better. The memory is where data and programs in active use are
located. RAM is very fast, though usually it has the property that
its contents go away when the computer is powered off. Thus it is
dynamic, rather than static, memory.

RAM is generally measured in gigabytes. A byte is composed
of eight bits, or binary digits: the fundamental unit of all data or
programs in a computer. For now, you can think of a byte as being
the amount of memory needed to hold one character, such as a letter
or number. A gigabyte, abbreviated GB, is roughly a billion bytes
(see Sidebar ??.1). This means that a gigabyte is sufficient to hold
about 2000 copies of War and Peace. At the time of this writing, it is



what is a computer? foundations of computer science 4

common for laptops, for example, to have 8–16 GB of RAM.

Figure 3: Front and back of an In-
tel Core i7 CPU. [By Atomicbre via
Wikimedia Commons, CC-BY-3.0]

RAM is also called primary storage, since it is the memory, or
storage, from which the CPU accesses data and programs. Secondary
storage also exists, usually these days as magnetic disks or flash
memory. Secondary storage is located “further” from the CPU
than primary storage; in fact, it is usually accessed via an interface
card or chip of some sort, via the southbridge chip and a bus other
than the internal bus. Secondary storage is usually both cheaper
and slower than RAM, and it almost always has the property of
retaining data even when unpowered. A typical disk at the time
of writing, for example, holds a terabyte (240, or about a trillion,
bytes) of data and programs, costs about 1–2% as much per byte as
RAM, and is up to 10

5 times slower (depending on what is being
measured). Flash storage, when used in solid-state drives (SSDs), is
intermediate between disks and RAM in terms of price (about 7–8

times as expensive as disk) and speed (up to 1000 times faster than a
disk).

Secondary storage is one kind of peripheral device, or just periph-
eral, meaning that it is not part of the CPU or memory themselves.
All other I/O fall into this category as well. Aside from disks and
SSDs, I/O devices can include keyboards, displays (really, graphics
cards), network cards, printers, and so on. We will have much more
to say about all of this in later chapters.

Digital data representation

So far, we have talked about the components of a computer without
specifying much about what kind of data is operated on and, hence,
what kind of hardware we are really talking about. In this book, and
almost always these days in almost all other contexts, “computer”
means digital electronic computer. There is an earlier kind that is still in
limited use: the analog computer. And there were digital computers Actually, there was an even earlier kind:

humans, generally women, who computed
things using pencil and paper or adding
machines. These people were actually called
"computers", leading the first computers
(in the sense we usually mean) to be called
"electronic computers", much as early
automobiles were called "horseless carriages".

that were not electronic, but rather mechanical or electromechanical;
we will not worry about them here, though, since all modern digital
computers are electronic. But what do we mean by “digital”?

A digital computer is one in which data is represented as numbers,
i.e., as strings of digits in some number system. This is in contrast
to an analog computer, in which data2 isrepresented as quantities of 2 We are aware that formally, “data”

is plural and “datum” is the singular.
However, we will usually treat “data”
as a mass noun, like “water”. Just as
one would say “the water is in the cup”,
we will say “the data is in the memory”;
when referring to a particular item of
data (i.e., a datum), we will usually
refer to “a piece of data” or “a unit of
data”.

some physical thing, such as voltage. Digital representation, with a
finite number of digits, means that values are discrete, as opposed to
continuous, as in an analog computer. In a continuous representation
system, there is always another value between any two data values;
in a discrete representation system, this is not the case.



what is a computer? foundations of computer science 5

Sidebar 1: Prefixes

Some of the powers of 2 have prefixes associated with them, analogous to the way powers of 10 do
(kilo-, mega-, etc.) in SI (Système International, or metric) units. Common usage is to use the same
prefixes for powers of two that have comparable magnitude to a decimal number. Thus 210 bits is about
1000, so that unit is called a kilobit (abbreviated Kb). Similarly, 220 is about a million, so that many
bits is called a megabit (Mb), 230 bits is a gigabit (Gb), 240 bits is a terabit (Tb), and 250 bits is a petabit
(Pb).

This is not an ideal situation, as there can be confusion about what someone means when they say or
write (e.g.) megabyte (MB): do they mean one million bytes (when talking about a disk, for example),
or do they mean 230 bytes (when talking about RAM, e.g.)?

In 1998, the International Electrotechnical Commission (IEC) approved a new set of prefixes and ab-
breviations for some powers of two. These are similar to the SI prefixes, but with the last two charac-
ters being “bi”, to be mnemonic for binary numbers. Thus, 1024 bytes is known as a kibibit, and ab-
breviated (Kib), 220 bytes is a Mebibyte (MiB), and so forth.

This system makes perfect sense, though to us old-timers, the names sound very odd. However, hu-
man nature being what it is, the original, arguably flawed system remains in use and will likely to con-
tinue to be in the future.

Digital computers, compared to analog, are more flexible, are
easier to program for complex tasks, can be constructed from a few
kinds of simple basic components (though using many of each), and
are extremely fast. In addition, programs for them are specified in
a form—text—that is easy to manipulate, transport, and share. In
addition, analog computers are generally not considered to be Turing-
equivalent (meaning they cannot necessarily compute all computable
functions).

They do have downsides, however. With an analog computer, there
are no inherent round-off errors or other artifacts of digital noise that
show up in digital computers. For example, with any finite number
of digits, there are simply going to be some numbers that cannot be
represented. Numbers with very large absolute magnitude, of course,
spring to mind, but there are also small numbers that cannot be
represented accurately. A simple example in base ten is the number
1
3 , i.e., 0.3. Without an infinite number of digits, this number cannot
be represented exactly. Irrational numbers, such as π, cannot be
represented in a finite number of digits, either. Although we may get
very close to the actual number, if we have a lot of digits to use, we
still won’t be able to exactly represent it. Not only that, but as we
perform calculations on inexact numbers, errors will mount in our



what is a computer? foundations of computer science 6

answers.
An immediate question that arises is, what digits should we use

in a digital computer? This is equivalent to asking what the number
and kinds of machine states are in a particular storage element (mem-
ory cell, register cell, etc.). There is no reason in principle why we
could not encode our everyday symbols, such as Arabic numerals
and alphabetic characters, directly as machine states. Arithmetic
could then be done in familiar decimal (base-10) fashion, and non-
numeric data would be easily converted into human-readable form.
We could even, in fact, use only numbers to represent it all by assign-
ing a number to each character, then interpreting the number as that
character as needed. For instance, we could let 97 = “a”, 98 = “b”, etc.
This kind of direct representation of base-10 numbers is what is done,
for example, in mechanical calculators.

A drawback of this is that are few if any easily-implemented 10-
state electronic devices: i.e., ones that can stably take on one of 10

different states to represent the numerals 0–9. Not only that, but
using the decimal digits would make electronic circuits more com-
plex than needed, for example, to do addition or other mathematical
operations.

There are, however, simple electronic devices that can stably
assume one of two possible states. For example, a transistor can be
turned “on” and “off”, similar to a light switch, by applying current
to one of it inputs (the base). Not only that, but these devices can be
switched from one state to the other extremely rapidly, currently on
the order of up to 100 billion times per second.

If we want to use these very fast, very simple devices, the problem
then is how to use two states to encode all the information we need.

For numbers, this is easy: instead of using base-10 numbers, use
base-2, also known as binary, numbers. It is sufficient for now to
realize that any number can be represented in any base, including, of
course, base 2. Many readers will have already encountered binary
numbers and binary arithmetic; not to worry if you haven’t: we’ll
cover them sufficiently for our purposes as we go. For now, just recall
that whereas our decimal (base 10) number system has 10 digits, 0–9,
base 2 has only 2: 0 and 1. (In base 2, the digits are known as binary
digits, or bits.) The “places” in decimal start on the right with 1s (10

0),
then 10s (10

1), 100s (10
2), 1000s (10

3) and so on. Similarly, the places
in binary start on the right with 1s (20), then 2s (21), 4s (22), 8s (23),
etc. Any number can be represented in either system, given sufficient
digits.

It turns out that all digital computers use binary representation
and hardware. It is much easier to implement electronic hardware for
this number system than any other, as we will see in Chapter ??.



what is a computer? foundations of computer science 7

Representing floating point numbers, i.e., those with a “.” in them
(a decimal point in base 10, a radix point in any base), is also done
with a string of binary digits, but it is somewhat complicated and
will only be touched on later in this book (in Chapter ??).

We don’t escape digital noise with binary, however; we just change
which numbers we can represent exactly. While 1

3 is still a repeating
“binary fraction” (0.01), so are other numbers that are not repeating
decimals, for example, 0.2, which is the binary fraction 0.0011. Irra-
tional numbers are still not representable exactly, either; π, in binary,
looks like:

11.00100100001111110110101010001000 . . .

So that’s numbers. But computers can handle so many more
kinds of data: text, audio files, images, movies. . . How are these
represented in a computer?

Any data can be represented as strings of binary digits, as it
happens. For example, text is handled by assigning unique binary
numbers to each character, then stringing them together in some
way (see Chapter ??). Thus, “a” might be represented as 011000012,
“b” as 011000102, etc. (A subscript is used to denote the base, where
there may be confusion: 9710 = 011000012, for example.) Images can
be encoded in many different ways, the simplest of which might
be simply assigning three numbers to each pixel (picture element)
in the picture, one each for the intensities of red, green, and blue
components of that pixel.

Thus, with one simple representation scheme—binary—a com-
puter can encode and manipulate virtually anything.

Software

Computer hardware would do nothing without software. By soft-
ware, we mean the programs that tell the CPU what to do. Software
and data are both stored in hardware: they are usually represented as
the states of various components (e.g., memory cells, spots on a disk,
etc.)

A CPU can itself, without additional software, understand only a
limited set of instructions, called machine instructions.3 Each instruc- 3 We often refer to a computer as

a machine, even though the quiet
box sitting on our desk bears little
resemblance at first glance to something
like a bulldozer, or even something
simple like a wheel.

tion is a particular sequence of binary digits, generally with different
fields, or subsequences, that tell the CPU what to do (the operator or
op code field) and what to do it to (the operand fields). The collection
of all instructions that a particular CPU can understand is called
its instruction set. Instruction sets may differ from CPU to CPU. All
programs, no matter how complex, ultimately are carried out by the
CPU executing sequences of instructions.



what is a computer? foundations of computer science 8

It is important to realize that since instructions are just sequences
of bits, a computer’s programs can be stored in its memory just
like data. In fact, a computer can treat its program as data or vice
versa. Not only does this mean that we don’t need special storage
technology for software, but it also means that programs can them-
selves be treated as data. This becomes important when we discuss
programming languages.

Figure 4: Front panel of a Digital Equip-
ment Corporation PDP–8 computer,
showing the toggle switches. [Photo
by Arj, via Wikimedia Commons, CC
BY-SA 3.0]

As an aside, a computer that stores its programs as data is called
a stored-program computer, which all modern computers are. A com-
puter that is organized and that operates as we have so far described,
and is a stored-program computer, is also known as a von Neumann
machine, after John von Neumann, who (with colleagues) first de-
scribed such a machine.

If we consider just the hardware, that is, the “bare machine” with-
out any other software, we can program it by storing a program
composed of machine instructions in its memory, then telling the
CPU to begin executing at some address in memory corresponding
to the start of the program. From then on, the fetch–execute cycle
will move the CPU’s attention through the program appropriately.
Another way of saying that is that the CPU’s program counter, which
contains the address of the next instruction, will change to point to
the correct place in the program as it is executed.

Programming a bare machine is extremely tedious, however. In
some early computers, it involved using toggle switches on the com-
puter’s front panel to input each instruction, one at a time. Figure 4,
for example, shows the front panel of a PDP–8 computer; programs
were entered via the toggle switches, one instruction at time, with
each bit being set by a switch. Usually, there would be some other
peripheral from which programs could be read, for example, a paper
tape reader. The computer operator would toggle in a small program
using the front panel that would then be able to read other programs
from the secondary storage device.

This is an example of a bootstrap program, whose purpose whose
purpose is to load the user’s real program. (This is where the term
“booting the computer” comes from, by the way.) Often, a bootstrap
program was pre-loaded in read-only memory (ROM), thus avoiding
the tedious toggling process.

Even without toggling in a program, it was cumbersome in the
extreme to write programs using binary, i.e., machine language. Early
on, programs called assemblers were written that allowed program-
mers to use mnemonics and familiar number representations (e.g.,
ADD 3,4) instead of binary. The assembler would then read in such an
assembly language program and translate it to a program in machine
language.



what is a computer? foundations of computer science 9

Still later, high-level languages (HLLs) were invented, which unlike
assembly languages, have more than one (usually many more than
one) machine instruction for each statement in the language. HLLs,
such as Python, Java, C, etc., are designed to make the task of pro-
gramming a computer easier for humans. Other programs then take
programs written in these languages and either translate them into
machine instructions or directly interpret them to carry out the oper-
ations required. This has many advantages, which will discuss later
when we discuss programming languages in more detail starting in
Chapter ??.

Even with HLLs, programming a bare machine is unhandy and,
usually, not very efficient. The programmer would have to include
code (a generic term for a program or pieces of a program) for com-
mon tasks, such as input/output, math functions, and so forth. He or
she would also have to manually sequence tasks such as translating a
HLL program to a machine language program, loading the program,
running the program, etc. This contributes to the inefficiency, as does
the fact that while his or her program is, for example, waiting for
input, the computer is doing nothing.

Luckily, few of us will have to deal with a bare machine these days
unless we are working the area of embedded systems. Instead, we
almost always interact with another program, the operating system,
which controls everything about the computer. The operating system
(OS) helps the programmer with the task of translating and loading
his or her program, provides common libraries, and manages the
computer’s resources (such as memory, disk space, etc.).

As important, an OS improves the efficiency (in terms of CPU
utilization). When a program pauses to wait for I/O, for example,
the OS can let another program run. In fact, by switching rapidly
between different running programs (also known as processes), the
computer gives the illusion that more than one program is running
at a time, even when there may be only a single CPU core.4 For

4 In this book, unless we say otherwise,
we will usually consider a CPU to be
able to execute only one instruction at a
time, even though most modern CPUs
have more than one "core", each of
which functions almost like a separate
CPU.

example, the laptop with which I am writing this currently has over
350 processes running at once.

Finally, as we will discuss in Chapter ??, an operating system
determines the “look and feel” of the computer as far as its users
are concerned. For example, a Macintosh seems quite different from
a computer running Windows. However, as far as the hardware
is concerned, they are extremely similar; in fact, most machines
could run any of the major modern operating systems (macOS,
Windows, or Linux). What makes the computers seem different is
their operating systems. That is, the operating system plus the user-
visible hardware (mouse, display, keyboard, etc.) comprises a virtual
machine.



what is a computer? foundations of computer science 10

An OS also defines what the computer looks like to programs as
well as users. This is very important for program portability and
efficient programming.

Summary

In this chapter, we have given a very quick overview of what a com-
puter is. In the rest of the book, we expand upon this. We order the
topics roughly in order of the level of abstraction. While at heart, a
computer is nothing more than millions of transistors and supporting
electronic components, it is more useful to think of it more abstractly,
for example, in terms of components called gates that can operate
on binary data. We talk about this in the next chapter, then continue
with higher levels of abstraction in future chapters: components in-
stead of gates, programming languages instead of machine language,
and so forth.

Exercises

1. What are some differences between primary and secondary storage?
2. Suppose you are able to toggle in an instruction every 5 seconds using the PDP–8’s front panel.

(a) How long would it take you, in seconds, to enter in a 4 kilobyte program? How many minutes? How
many hours?

(b) Microsoft Word on our computer takes up about 34 megabytes. How many hours would this take to
toggle in? How many days? How many years?

3. (Advanced) Find an example of a computer that is not a von Neumann computer and describe it.
4. (Advanced) Describe how an analog computer works using information you find on the Web.


	Hardware
	Digital data representation
	Software
	Summary
	Exercises

