This paper appears in the world Proceedings of the Ninth International and Interdisciplinary Conference on Modeling and Using
Context (CONTEXT"15), November 2-6, 2015, Lanarca, Cyprus, and in Lecture Notes in Artificial Intelligence (Springer). Copyright
Springer and the authors. The final publication is available at Springer via http://dx.doi.otg.

Representing and Communicating Context in
Multiagent Systems

Sonia Rode and Roy M. Turner

School of Computing and Information Science
University of Maine
Orono, ME 04469 USA

{sonia.rode,rturner}@maine.edu

Abstract. Context-aware agents operating in a cooperative multiagent
system (MAS) can benefit from establishing a shared view of their con-
text, since this increases coherence and consistency in the system’s be-
havior. To this end, agents must share contextual knowledge with each
other. In our prior work on context-mediated behavior, agents used
frame-based contextual schemas (c-schemas) to explicitly represent and
reason about context. While an expressively rich approach, the lack of
formal structure poses problems for mutual understanding of c-schemas
among agents in a MAS. As we are interested MASs with heterogeneous
agents, not only will agents represent c-schemas in idiosyncratic ways,
but the set of c-schemas known by each agent will differ. In this paper
we propose a new, related representation of contextual knowledge using
description logic and a shared ontology, and we present a technique for
communicating contextual knowledge while respecting bandwidth limi-
tations.

Keywords: Multiagent systems, communicating contextual knowledge, context
representation

1 Introduction

Multiagent systems (MASs) are groups of intelligent agents that interact, usually
to carry out a set of goals. They are of interest for a variety of tasks, from
autonomous exploration to data collection (e.g., [6]) to e-commerce. A MAS
may be cooperative, in which case the agents work together to achieve common
goals, or the individual agents may be self-interested and each work to satisfy
their own goals, which may or may not align with some global set of goals.

While a great deal of work has been done on the problem of ensuring that
individual agents behave appropriately for their context, much of it reported
in this conference series, much less has focused on agents working in a MAS.
However, context-appropriate behavior is just as important for an agent in a
MAS, and it is important that the MAS as a whole behaves appropriately for
its context.

This paper appears in the world Proceedings of the Ninth International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT'15), November 2-6, 2015, Lanarca, Cyprus, and in Lecture Notes in Artificial Intelligence (Springer). Copyright Springer and the authors. The final publication is available at Springer via http://dx.doi.org.

The problem is more difficult than for a single agent. The contexts of indi-
vidual agents now always include other agents, which may be unpredictable to
some extent and which are themselves behaving in ways influenced by their own
contexts. There is also the opportunity for agents to gather information from
others to better understand their context, but at the cost of added complexity,
effort, and time.

While we could focus only on agent-level context recognition and hope that
globally-appropriate behavior will emerge from the interactions of the agents,
this suffers from problems similar to agent-level control of planning in multiagent
systems, primarily a lack of global coherence. Instead, the MAS, or at least a
subset of its agents, should attempt to share information about the context to
arrive at a shared, more complete “partial global context” (to borrow from partial
global planning [7]). The individual agents, as well as any control mechanisms
for the MAS as a whole, can then take the shared context into account when
determining how to achieve individual goals, organize the agents, assign tasks,
and coordinate agents’ actions.

The ability to reason and communicate about the context implies that the
context is explicitly represented. It also implies that there is a message protocol
for communicating about the context, and that there is a way for different agents
to represent contexts and agree on the meaning of contextual knowledge. This
implies that there exists a representation language for contextual knowledge as
well as a shared ontology that the agents can refer to for terms’ meanings.

In earlier work [18], we described an approach to multiagent context-
appropriate behavior that we called distributed context-mediated behavior,
which we refer to here as multiagent context-mediated behavior, or MASCon.!
This approach relies on agents communicating about their perceived context,
knowledge, goals, and percepts in order to arrive at a representation of the
MAS’s global context (the context representation, or CoRe). The process in-
volves context representation, local context assessment, communication, and a
distributed assessment of the global context.

This paper focuses on the communication aspects of MASCon, including how
contextual knowledge is represented to facilitate communication (and reasoning)
about context. We focus first on representation, and describe the description
logic-based representation of contexts and contextual knowledge, an ontology for
contextual knowledge, and how that knowledge is represented as c-schemas. The
c-schemas themselves can be viewed collectively as forming a kind of ontology for
contexts. We then discuss context-related communication in MASCon. Part of
this involves a message protocol for communicating about context that attempts
to minimize bandwidth needed, (synergistic with any data compression that
might be used) which is a key concern for some domains (e.g., a MAS consisting
of underwater vehicles). The other part is deciding what to communicate about
the context in order for agents to arrive at a shared understanding.

! The name seems appropriate, since just as a mascon is a concentration of mass that
affects (e.g.) a satellite’s orbit, our approach relies on a concentration of contextual
knowledge to affect a MAS’s behavior.

2 Representation language

Agents need a shared language and ontology in order to communicate about any-
thing, not just their context, and there has been much work on both in artificial
intelligence, especially in the area of multiagent systems. Unfortunately, most
work on knowledge representation and ontologies has not focused on contextual
knowledge per se, but rather on domain and problem-solving (e.g., planning)
knowledge. This is largely because context has seldom been considered as a
first-order concept, but instead has been treated implicitly.

Context has been considered a first-order concept in some formal logic work,
especially in the context community (e.g., [4,8,12]), and in some non-logical ap-
proaches (e.g., [3,9]). Our previous work has also addressed this by creating ex-
plicit representations for contexts (c-schemas) and for the contextual knowledge
they must contain [17].

Unfortunately, our prior work lacked a formal representation language, and
the ontology and semantics were idiosyncratic to each project and somewhat ad
hoc. This is problematic if agents are to interact with others that may not have
the same designers or reasoning mechanisms, such as would be the case in some
open multiagent systems (e.g., autonomous oceanographic sampling networks
[6]). In addition, the representation was frame-based, which has some beneficial
properties, especially knowledge clustering, but for which there are no really
good, widely-accepted reasoning mechanisms as there are, say, for formal logic.

What is needed, then, is an ontology for contextual knowledge and a way to
represent it for communication that has a well-defined, formal basis, for which
there are tractable reasoning mechanisms, and that is amenable to being related
to a shared ontology.

For these reasons, we are now basing our contextual knowledge represen-
tation on description logic [1], a widely-used formalism in multiagent systems
and the semantic web [2]. There has been other work on representing contextual
knowledge as description logic, for example the work of Wang et al. [19], which
was based on the Web Ontology Language (OWL). However, since their repre-
sentation of context does not include guidance for behavior, it is not sufficient
for our purposes.

We assume that most readers will have some familiarity with description logic
(DL), and only a quick overview is presented here to allow others to understand
terms in the rest of the paper. DL is a set of languages based around the idea of
sets of individuals, restrictions on set membership, operators, and subsumption.
A description of a set of individuals is termed a concept, for example, AUV (au-
tonomous underwater vehicle). Concepts are viewed as having roles that can be
used to restrict the individuals that are members of the set; for example, (AND
AUV (SOME hasColor Yellow))2 would denote the set of yellow AUVs. This
example also shows an operator, conjunction, and the existential quantifier.

Determining subsumption is the primary inference type in DL: if A and B
are concepts (i.e., descriptions of sets), then A is said to subsume B if B C A.

2 Sometimes written AUV M 3 hasColor.Yellow.

For example, the atomic concept AUV subsumes the more restricted description
above for yellow AUVs. Although relatively straightforward, for some description
logics, subsumption checking is intractable in the worst case.

The particular DL we use in our work is a version of the language L1 as spec-
ified by Teege [15], which allows concept union, concept intersection, existential
role restriction, minimum cardinality role restriction, and role composition. Ax-
ioms can be defined using these operators and used as concept definitions. The
operators provide sufficient expressive power for our purposes. The L1 language
has the property of structural subsumption, which means that the subsumption
test on concepts always reduces to subsumption tests of single clauses. A clause
is a description that cannot be further decomposed into a conjunction. The rea-
son we require structural subsumption is to allow for an efficient algorithm for
communicating contexts, which will be discussed in detail later.?

The version of L1 we use adds datatypes, equivalent to the way one of the
Web Ontology Language (OWL) variants, OWL-DL [13], uses them. Datatype
roles are permitted, which are similar to regular roles but with data values
(e.g., integers, strings, etc.) as opposed to concepts as the fillers. This does
not interfere with the use of structural subsumption in our algorithm. For our
purposes, datatype roles are treated like regular roles, and we consider that a
data value “subsumes” another whenever the two values are of the same type.

A concept such as Yellow or AUV is an atomic concept. These concepts live
in an ontology, an isa hierarchy that directly shows the set—subset relationships
between the concepts. Figure 1 shows a portion of the ontology we use in this
project, for example (with subtrees not shown for some concepts).

AbortMission

MaintainPosition

(AttentionFocusingContextuaIKnowIedge)

StandingOrders \
PrescriptiveContextualKnowIedge)
EventHandlingknowledge '/

(F‘roceduralContextualKnowIedge) ContextualKnowledge

(F’redictedContextualKnowIedge)

OceanSurface

(OceanThing {OceanFloor)
WaterColumn
/S
.
XDescriptiveContextuaIKnowIedge)
(ContextDependentSemantics)

Fig. 1. A portion of the ontology. Thing is the top-level concept. Some subtrees are
hidden to save space.

AbstractThing
PhysicalThing

3 Structural subsumption is weaker than logical subsumption [1].

All concept definitions as well as all axioms in DL belong to what is called the
reasoner’s terminological box, or TBox. In the case of this project, all agents will
have some common knowledge in their TBoxes, that is, their shared knowledge,
including the ontology, will mostly reside there.

3 Contextual knowledge

There are two main concerns when explicitly representing knowledge about con-
texts: representing the contexts themselves, and representing the kinds of con-
textual knowledge they can contain.

MASCon, like all of our projects based on context-mediated behavior, repre-
sents contexts as knowledge structures called contextual schemas, or c-schemas.
In the past, these have been frame-like structures with roles defining the kinds
of knowledge being represented: knowledge for handling unanticipated events,
for modifying goal priorities, and so forth. In this project, we have largely done
away with this frame-like nature. Instead, c-schemas are primarily containers for
description logic statements (concept descriptions and axioms) that apply in the
represented context (cf. Guha’s [10] microtheories).

A c-schema contains several types of knowledge about the represented con-
text, each of which is best represented as a type of knowledge in its own right,
i.e., a concept in the ontology. This allows the reasoner to easily determine what
the knowledge is and how it is meant to be applied in the situation. Some re-
searchers in the pervasive computing community (e.g., [19]) have also developed
ontologies for context, but the kinds of contextual information used in that com-
munity tend to be only a subset of what is needed for context-sensitive behavior
in agent-based and multiagent based systems.

We can broadly classify the needed contextual knowledge as being either
descriptive or prescriptive. The former describes the features expected in the
context, that is, the features of situations that are instances of the context. This
knowledge is used in assessing the context, and it can be used to generate predic-
tions about unseen features of the situation and to help understand newly-seen
features. Part of descriptive knowledge is also any context-dependent seman-
tics, for example, what a fuzzy logic or description logic concept might mean in
the context that is different from its normal meaning. Prescriptive knowledge
tells the agent how to behave in the context. There are several kinds: knowl-
edge about goals and their context-appropriate priority, ways to achieve goals in
the context, how to recognize and handle unanticipated events, and how to set
non-goal-based behavioral parameters appropriately (e.g., sonar status, recom-
mended depth envelope, etc.). In the case of multiagent systems, actions would
also include such things as how/when/what to communicate, how to organize
the group of agents, authority relationships, if any, and so forth.

Each kind of contextual knowledge is present in the agents’ shared ontology,
as shown in Figure 1 (StandingOrder represents behavioral parameter settings).
This allows agents to communicate about the contents of c-schemas without the
problem of being misunderstood. The definitions of concepts in the ontology

PredictedContextFeatures:
(expectsPresenceOf some AbstractThing) or
(expectsPresenceOf some PhysicalThing)
ContextDependentSemantics:
(hasFuzzyFeature some
(AbstractThing and
(hasFuzzyMembershipFunction some FuzzyMembershipFunction)))
StandingOrders:
(hasActivePeriod some ContextLifeCycle)and
(hasOperationalSetting some
((SelfState and (hasAdvisedLowerBound some Number)) or
(SelfState and (hasAdvisedUpperBound some Number)) or
(SelfState and (hasAdvisedValue some ValuePartition))))
EventHandlingKnowledge:
(handlesEvent some Event) and (hasImportance some DefaultValuePartition)
and (respondsWithAction some Action)
AttentionFocusingKnowledge:
(definesGoal some AbstractThing) and
(hasCost some DefaultValuePartition) and
(hasDegreeExpected some DefaultValuePartition) and
(hasImportance some DefaultValuePartition) and (isAchievedBy some Action)
ProceduralKnowledge:
(definesAction some Action)

Fig. 2. Some definitions of contextual knowledge concepts

contain not just their name, but also their roles and their definitions in terms
of other concepts. Figure 2 shows some of the definitions for our contextual
knowledge.
The actual concept descriptions in a c-schema will make use of these con-
cepts; for example, the description:
(AND EventHandlingKnowledge (SOME handlesEvent PowerFailure)
(SOME hasImportance High)
(SOME respondsWithAction AbortMission))

describes a piece of event-handling knowledge telling an AUV that is suffering a
power failure that the event is very important and can best be handled in this
context by aborting the mission.

Within a c-schema, a piece of contextual knowledge (an assertion) is as-
sociated with a name that is unique across all of the agent’s knowledge. For
shared (“prototype”) c-schemas that are part of the MAS’s common knowledge,
all agents know these unique names. We require this to reduce bandwidth via
our message protocol (see below).

In addition to a name, each assertion can also have associated metadata that
is not part of the DL description. This is useful for knowledge that would be
inconvenient or impossible to represent using the description logic in use. For
example, we would like each concept within a c-schema to have an associated
certainty factor (CF) representing the agent’s certainty that the concept occurs
or is relevant to the context; this is used by MASCon in context assessment,

making predictions, etc. However, if the CFs were represented as part of the
assertion, then they would be taken into account during subsumption, causing
subsumption that would otherwise succeed to instead fail due solely to differing
CFs. Consequently, CFs are represented as metadata.

Figure 3 shows an example of part of a contextual schema in our approach,
in this case, one that represents being in the context of performing a sampling
mission. The names of the pieces of contextual knowledge are unimportant for
our purposes, but note that each piece has a description and a piece of metadata,
the certainty factor. The c-schema predicts (or matches) that the mission area is
large (BSM-1) and that the agent has a sampling mission active (BSM-2). What
“large” (Broad) means is also defined in terms of a fuzzy membership function
(BSM-3). This is one way in which the semantics of terms used by the agent
are context-dependent in our approach. The c-schema also suggests a behavioral
parameter setting that is appropriate for the context (a “standing order”), i.e.,
that obstacle sensitivity should be High (BSM-4). The portion shown also con-
tains some event-handling knowledge about sensor failures as well as some action
information.

BSM-1(0.60): (AND PredictiveContextualFeature
(SOME expectsPresence0f
(AND MissionArea (SOME hasFuzzyValue Broad))))
BSM-2(0.34): (AND PredictiveContextualFeature
(SOME expectsPresence0f (AND SamplingMission
(SOME hasSamplingTarget Thing))))
BSM-3(0.41): (AND ContextDependentSemantics
(SOME hasFuzzyFeature
(AND Broad
(SOME hasFuzzyMembershipFunction
(AND ShoulderFunction
(SOME hasLocalMinAt (AND Float 5.0 mi~2))
(SOME hasLocalMaxAt
(AND Float 20.0 mi~2)))))))
BSM-4(0.59): (AND StandingOrder
(SOME hasActivePeriod DuringContext)
(SOME hasOperationalSetting
(AND ObstacleSensitivity (SOME hasAdvisedValue High))))
SM-5(0.064) : (AND EventHandlingKnowledge
(SOME handlesEvent SensorFailure)
(SOME hasImportance High)
(SOME respondsWithAction
(AND TransferData (SOME hasObject
(AND Sensor
(SOME hasStatus FailureImminent)))
(SOME toObject MAS))))
BSM-7(0.55): (AND EventHandlingKnowledge
(SOME handlesEvent SamplingComplete)
(SOME hasImportance High)
(SOME respondsWithAction Transit))
BSM-8(0.74): (AND ProceduralKnowledge
(SOME definesAction
(AND Transit (SOME hasIndex Survey))))

Fig. 3. Part of the contextual schema BroadSamplingMissionCtx (Format: label (CF) :
description)

Conceptually, contextual schemas themselves are part of the ontology. Each
c-schema describes a concept corresponding to a context, or set of situations. C-
schemas exist within generalization/specialization hierarchies in much the same
way concepts are related an ontology. For example, the context “in a harbor” is
a generalization of “in Portsmouth Harbor”. In addition, agents share knowledge
about c-schemas representing prototype contexts.

However, c-schemas are different than other concept descriptions. First, they
contain a significant amount of knowledge that is not in the form of DL roles
(e.g., metadata, information to index other related c-schemas, etc.). Second,
although they do have specialization /generalization relationships, these can rep-
resent other c-schemas that they were derived from or that they can be found
from (in memory) instead of true subclass relationships. Third, unlike an ontol-
ogy, both the set of c-schemas and their relationships to one another are expected
to change relatively frequently as an agent experiences new situations that lead
to creating new c-schemas or modifying existing ones. And fourth, unlike ontol-
ogy concepts, many c-schemas will be idiosyncratic to particular agents, since
not all agents will experience the same contexts as they operate.

For these reasons, we treat c-schemas differently than other parts of an agent’s
ontology. An agent has a separate c-schema memory that changes over time as
it gains experience. The schema memory is assumed to organize c-schemas in
generalization /specialization hierarchies that can be traversed based on features
of the situation to find c-schema(s) matching the situation [17,18]. Such a mem-
ory is essentially a set of dynamic discrimination networks that change based
on the memory’s contents. As an agent gains experience, it will create and store
new c-schemas in this memory, and it may learn new connections between ex-
isting c-schemas. Shared prototype c-schemas are considered fixed across the
agents, corresponding in some ways to a shared “upper ontology”. However, how
c-schemas are indexed in agents’ memory and any idiosyncratic c-schemas de-
rived from the prototypes will likely differ from agent to agent.

4 Communicating about context

In MASCon, agents communicate about their context during distributed context
assessment as well as when deciding what the context means in terms of their
behavior. If only the prototype contexts were considered, communication would
be trivial: just an identifier for the shared c-schema would need to be sent.
However, it is more likely over time, as agents learn new contexts, that agents
will each believe that the current situation is an instance of one of their own
known idiosyncratic contexts.

We do not want the agents just to send the complete contents of such c-
schemas to others. One reason is bandwidth. In many domains of interest, band-
width is quite limited; for example, in the underwater vehicle domain, maximum
bandwidth is on the order of 60 kbit/s or less [14]. Consequently, saving band-
width is critical for MASs operating in those environments. The second reason
is a matter of focus. If all information is sent, then the other agent has to try to

match a large amount of knowledge against all of its own c-schemas; if we can
provide some commonality, then the receiver can focus immediately on its own
c-schema and the differences between it and what was sent.

In our approach, an agent makes use of its shared contextual knowledge, rep-
resented as prototypical c-schemas, to communicate only what is needed to allow
the recipient to regenerate the idiosyncratic contexts from its own prototypical
contextual schemas. This is reminiscent of earlier work on the agent communi-
cation language COLA [16], which also was concerned with limiting bandwidth
by appeal to shared knowledge. While at the current time we are focused on
communicating contextual knowledge, our approach is not incompatible with a
COLA-based communication system.

There are two major problems to be addressed for agents communicating
about contextual knowledge. The first is what message protocol to use when
exchanging messages. The second is determining what to send.

4.1 Message protocol

MASCon’s message protocol focuses on the different kinds of relationships be-
tween knowledge in an idiosyncratic context and in prototype ancestors. Com-
municating about an idiosyncratic context will require multiple messages, since
the prototypical context will have to be identified, then differences from it will
need to be communicated. Which message types are sent is determined by the
algorithms described in the next section.

Figure 4 shows the grammar for our message protocol. Strings on the right-
hand side of <ck-type> are abbreviations for our six types of contextual knowl-
edge: predicted context features, context-dependent semantics, standing orders,
event-handling knowledge, attention-focusing knowledge, and procedural knowl-
edge.

When an idiosyncratic context K contains some of the same contex-
tual knowledge as a prototype ancestor (shared) c-schema P, an ALL-MSG,
ALL-EX-MSG, or SOME-VMSG is used. Suppose P has three pieces of event-handling
knowledge with identifiers p1, p2, and p3. Then the message

ALL EHK P 0.9 0.8 0.7
indicates that K has all the event-handling knowledge from P. The float values
are the certainty factors for the three pieces of knowledge in K. The ordering of
the certainty factors in the message correspond to the order in which the event-
handling knowledge is found in P. In contrast, the message
ALL EHK P EXCEPT p2 0.9 0.7
means that K includes all the event-handling knowledge from P except p2. We
can refer to the pieces of knowledge by name, as we can rely on their order, since
the representations of the prototypes are known to both the sender and receiver
as shared knowledge. Alternatively, the message
SOME p1 p3 0.9 0.7
has the same meaning as the ALL-EX message, and is the better choice in this
case because it is shorter.

Up to this point, we have been concerned with the case in which K may not
match P exactly, but some or most of its corresponding contextual knowledge
does match. However, corresponding pieces of contextual knowledge may only
partially match in many cases. This case is handled by the MOD-MSG message
type.

The two descriptions of AttentionFocusingKnowledge shown in Figure 5
have some role restrictions in common and some that differ. If we suppose that
rm-afk-1 belongs to a prototypical c-schema, we can use a MOD-MSG to express
sm-afk-1. The <d1-difference>+ part of a MOD-MSG message will describe the
differences between rm-afk-1 and sm-afk-1 and allow for the agent receiving
the message to reconstruct sm-afk-1.

A NEW-MSG message, which sends a verbatim description of knowledge, is
used as a last resort when none of the other message types can capture a piece
of knowledge. The circumstances in which a NEW-MSG is used are outlined in the
next section.

4.2 Deciding what to send

We have devised an algorithm by which agents can generate a set of messages
to completely describe an idiosyncratic context. The algorithm, which assumes
an agent can correctly retrieve the prototypical ancestor(s) of an idiosyncratic
context, is divided into two phases. The first phase generates message types
ALL-MSG, ALL-EX-MSG, and SOME-MSG, which are the message types that deal with
direct matches between idiosyncratic and prototypical knowledge. The second
phase generates message types MOD-MSG and NEW-MSG, which cover all the rest.
Both parts of the algorithm require a DL reasoning engine.

MESSAGE ::= ALL-MSG | ALL-EX-MSG | SOME-MSG | NEW-MSG |
MOD-MSG | START | END

START ::= "CTX"
END ::= "CTX-END"
ALL-MSG ::=““ALL’’ <ck-type>? <proto> <new-cf>*
ALL-EX-MSG ::=““ALL” <ck-type>? <proto> ‘EXCEPT’’ <ck-code>+
<new-cf>*
SOME-MSG : := SOME <ck-code>+ <new-cf>*
NEW-MSG : := “NEW’ <full-ck-descrip> <new-cf>
MOD-MSG ::= ‘“MODIFIES’’ <ck-code> <dl-difference>+ <new-cf>?
<ck-type> ::=‘“PCF’ | “CDS’ | ¢SO’ | “EHK | ““AFK” | ‘‘PK”’
<proto> ::=a name of a prototypical context
<new-cf> ::= float
<ck-code> ::=name of contextual knowledge item in prototypical
context

<full-ck-descrip> ::=a KRSS (this is a DL syntax) description that
is-a ContextualKnowledge

a KRSS description

<dl-difference> ::

Fig. 4. The message protocol

;3 AbortMission goal has high importance, has medium cost,
;; and is achieved by action Abort:
rm-afk-1(0.93): (AND (SOME definesGoal AbortMission)

(SOME hasImportance High)

(SOME hasCost Medium)

(SOME isAchievedBy Abort))
;3 AbortMission has medium importance, has medium cost, and is
;3 achieved by aborting to sea floor}:
sm-afk-1(0.89): (AND (SOME definesGoal AbortMission)

(SOME hasImportance Medium)

(SOME hasCost Medium)

(SOME isAchievedBy

(AND Abort (SOME hasObject SeaFloor))))

Fig. 5. Two partially-matching pieces of contextual knowledge

Direct match algorithm. Let C; be an idiosyncratic c-schema and Cp be
the set of its prototype ancestors, and let ck; refer to a piece of knowledge in Cf.
To find direct matches for contextual knowledge in C, the DL reasoner is used
to look for concept synonyms in the combined knowledge of Cp for each ck;.

Our goal is to partition the set of directly matched ck; into subsets, where
each subset is covered by a single message from the types ALL-MSG, ALL-EX-MSG,
or SOME-MSG, such that the total number of bytes of the messages is mini-
mized. Unfortunately, this is an exponential-time problem. Consequently, we use
a greedy algorithm to approximate this partitioning. The algorithm repeatedly
loops through the six contextual knowledge types until all the direct matches
have been handled by a message. It finds the prototype context with the most
unhandled direct matches of the current knowledge type, and uses this prototype
context as a reference point to create a message covering this knowledge. Thus
at each iteration we pick a subset and produce a message for it. The messages
that cover each subset in the partition can then be sent, with their certainty
factors based on the idiosyncratic context C7.

Computing differences. In addition to messages for the directly-matching
contextual knowledge, the agent must send messages for the rest of the knowl-
edge in the idiosyncratic c-schema Cj. These messages will have to be of
types MOD-MSG or NEW-MSG, each covering a single piece of knowledge ck;. Let
M; = {ck;|ck; has no direct matches}. The algorithm iterates through each
ck; € My, determining which message type to use.

The algorithm attempts first to use a MOD-MSG message, since that should be
shorter than using a NEW-MSG message. To do this, it checks to see if there is a
piece of knowledge ck, from Cp that can be used as a point of reference for ck;.
The differences between ck, and ck; are then expressed in the <d1-difference>+
portion of the MOD-MSG message.

Our algorithm for computing differences between ck; and ck, makes use of the
DL subtraction operation [15]. If B and A are two DL concepts and A subsumes
B, then the subtraction (difference) operation, B — A, gives a new concept such
that each piece of information in B that is present in A is removed. For DLs with
structural subsumption, a simple implementation of this operator is possible.

In our case, we can find the differences even if the one concept does
not subsume the other, since we know that the two are both of the same
ContextualKnowledge type: they contain the same restriction clauses and only
differ in the role ranges for the clauses. Consider again the two pieces of knowl-
edge shown in Figure 5, where rm-afk-1 corresponds to ck, and sm-afk-1 is
ck;. The MOD-MSG message expressing sm-afk-1 is

MODIFIES rm-afk-1 (SOME hasImportance Medium)
(AND Abort
(SOME hasObject seaFloor)) 0.89

Rules outline how the recipient can reconstruct sm-afk-1 based on the mes-
sage contents. Let d be a description in the <dl-difference>+ portion of a
MOD-MSG M, p be the description of the <ck-code> in M, and type(p) be the
ContextualKnowledge subclass to which p belongs. Then d is interpreted as
follows:

1. If d is a restriction on role r, a required role of type(p), d is meant to replace
the restriction on role r found in p.

2. If d is a restriction on any other role, it is meant to be ANDed to p.

3. If d is a conjunction containing a primitive base concept, let g be a superclass
of d such that ¢ is found in p. Then d is meant to replace each instance of
g in p.

4. If d is of any other form, it is an error.

Sometimes it is not possible to create a MOD-MSG message for two pieces
of differing contextual knowledge, for example in the case where the only
ContextualKnowledge type in common is ContextualKnowlege itself. The rules
for reconstructing a MOD-MSG allow successful creation of a MOD-MSG referencing
any ck, that is the same ContextualKnowledge bottom-level type as ck;. How-
ever in some cases all possible ck, for ck; will have no subsuming role ranges for
the required roles. In this case the MOD-MSG produced will contain all the con-
joined clauses from ck;, which is essentially the same as what is contained in a
NEW-MSG. In this case, the NEW-MSG is shorter than using MOD-MSG and referencing
a piece of prototypical knowledge.

5 Evaluation

The message generation algorithms have been implemented and tested using
a randomly generated c-schema hierarchy. This was done to avoid accruing the
extensive domain knowledge of the AUV domain needed to create a set of realistic
contexts, which is not the focus of this work. Instead, well-structured contexts
were generated based on the ontology.

The context-generation mechanism is implemented in Common Lisp and uses
the reasoner RACER [11] for DL inference. The program first reads the descrip-
tion of the ontology, stored as an OWL ontology file. To create a complete
c-schema, several pieces of each ContextualKnowledge type are generated and

combined. To create a piece of contextual knowledge, for each role in its defini-
tion, a suitable concept is chosen as the value. If there are unfilled roles in that
concept, then the process continues recursively.

A small number of c-schemas were created to serve as prototype contexts
and placed in a context hierarchy. Idiosyncratic contexts were then generated
by choosing prototypes as parents, then combining and randomly modifying
their knowledge. Modifications included replacing concepts with their siblings or
descendants and adding role restrictions.

For a preliminary evaluation, twenty idiosyncratic c-schemas were generated
from four prototype c-schemas. The message generation procedure was run on
each idiosyncratic c-schema, and the resulting messages were processed by a
message receiver procedure that implemented the rules for interpreting messages.
The c-schema produced by the receiver procedure matched the original c-schema
each time. Further evaluation will be aimed at comparing the number of bytes
of the generated messages to the minimum number of bytes required to encode
the c-schema to determine the effectiveness of bandwidth-reducing heuristics.

6 Conclusion and future work

This paper describes an approach to context representation and communica-
tion to support multiagent context assessment by allowing agents to share their
individually-known contexts with each other in an efficient manner. An ontology
for contextual knowledge, represented using description logic, has been devel-
oped, and the representation of contexts themselves as c-schemas is also very
much like an ontology. A message protocol and algorithms to support its use
have been developed to allow an agent to decide which pieces of contextual
knowledge it needs to send and how to send them.

The work reported is at an early stage, and so at this point, evaluation has
been limited. The next step is to perform much more extensive evaluation to
determine strengths/weaknesses of the approach and to quantify the efficiency
of context communication in this approach.

Beyond representation and communication in MASCon, we are working on
the problem of how agents can negotiate to come to an agreement on their
shared context. To arrive at a consensus, agents must be able to evaluate others’
knowledge based on their own. Our DL representation facilitates many possi-
ble techniques for an agent to compare pieces of knowledge. After receiving a
contextual knowledge message, an agent can look for concept ancestors and de-
scendants in its own evoked c-schemas, where ancestors represent more general
and descendants represent more specialized knowledge. This can help an agent
determine what aspects of the received knowledge it agrees with. An agent can
also find the least common subsumer [5] of two knowledge descriptions, which
finds the largest set of commonalities between two descriptions. In addition to
techniques for evaluating knowledge, we are extending the message protocol to
include message types for negotiation. Messages will be added for agreeing and
disagreeing about received contextual knowledge and reasons for disagreement.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Ap-

plications. Cambridge University Press (2003)

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 28-37 (2001)

Brezillon, P., Pasquier, L., Pomerol, J.C.: Reasoning with contextual graphs. Eu-
ropean Journal of Operational Research 136(2), 290-298 (2002)

Buva¢, S.: Quantificational logic of context. In: Working Notes of the IJCAI-95
Workshop on Modelling Context in Kn. Rep. and Reas. (1995)

Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: AAAIL pp. 754-760 (1992)

Curtin, T., Bellingham, J., Catipovic, J., Webb, D.: Autonomous oceanographic
sampling networks. Oceanography 6(3) (1993)

Durfee, E.H., Lesser, V.R.: Using partial global plans to coordinate distributed
problem solvers. In: IJCAI pp. 875-883 (1987)

Giunchiglia, F.: Contextual reasoning. Epistemologia 16, 345-364 (1993)
Gonzalez, A.J., Stensrud, B.S., Barrett, G.: Formalizing context-based reasoning: A
modeling paradigm for representing tactical human behavior. International Journal
of Intelligent Systems 23(7), 822-847 (2008)

Guha, R.: Contexts: A formalization and some applications. Ph.D. thesis, Stanford
University (1991)

Haarslev, V., Miiller, R.: Racer system description. In: Automated Reasoning, pp.
701-705. Springer (2001)

McCarthy, J.: Notes on formalizing context. In: IJCAL pp. 555-560 (1993)
McGuinness, D.L., Van Harmelen, F.: OWL web Ontology Language overview.
Tech. rep., W3C (February 2004), www.w3.org/TR/owl-features, W3C Recom-
mendation

Song, H., Hodgkiss, W.: Efficient use of bandwidth for underwater acoustic com-
munication. J. Acoustical Soc. of America 134(2), 905-908 (2013)

Teege, G.: Making the difference: A subtraction operation for description logics.
KR 94, 540-550 (1994)

Turner, E.H., Chappell, S.G., Valcourt, S.A., Dempsey, M.J.: COLA: A language
to support communication between multiple cooperating vehicles. In: Proc. Symp.
on AUV Technology (AUV’94). pp. 309-316. IEEE (1994)

Turner, R.M.: Context-mediated behavior. In: Brézillon, P., Gonzalez, A. (eds.)
Context in Computing: A Cross-Disciplinary Approach for Modeling the Real
World Through Contextual Reasoning, chap. 32, pp. 523-540. Springer (2014)
Turner, R.M., Rode, S., Gagne, D.: Toward distributed context-mediated behavior
for multiagent systems. In: Proc. CONTEXT’13. Annecy, France (2013)

Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context model-
ing and reasoning using OWL. In: Proc. Second IEEE Ann. Conf. on Pervasive
Computing and Communications. pp. 18-22 (2004)

www.w3.org/TR/owl-features

	Representing and Communicating Context in Multiagent Systems

