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Abstract. Although much attention has been devoted to modeling and
using context in intelligent agents, relatively little has been given to the
problem for multiagent systems (MASs). Yet, just as with an individ-
ual agent, context affects how a MAS should behave. In this paper, we
discuss an approach to distributed context management for multiagent
systems. The approach is based on earlier work on context-mediated be-
havior (CMB) for single agents, which explicitly represents contexts as
c-schemas that contain knowledge about how to behave in the contexts
represented. We are distributing CMB for use in advanced multiagent
systems. This work is just beginning, and so the paper discusses issues
and potential approaches to distributing CMB.
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1 Introduction

Modeling context and the use of contextual knowledge has been the subject of
intense interest in recent years, not only in the interdisciplinary context com-
munity (as represented, e.g., in the CONTEXT conference series), but also in
natural language understanding, ubiquitous computing, and context-aware ap-
plications. With the exception of work in natural language understanding, most
work has focused on understanding the role of context and contextual knowl-
edge in the decision processes of single agents. The literature is far too broad to
synopsize here, but our own past work (e.g., [1, 2]) is somewhat representative,
focusing on explicitly representing contexts as first-class objects, having agents
assess their current situation in terms of known contexts, and then using the
resulting contextual knowledge to guide the agent to behave appropriately.

Context is also important for multiagent systems (MAS), however. In the
simplest case, a context-aware agent will know how best to behave within the
structure and environment of a MAS. But the role of context in a MAS goes
beyond this. One can also think of the context of the MAS as a whole. If the
MAS’ agents can, together, recognize this global context (joint context, shared
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context), then potentially they can all behave more appropriately and effectively
as members of the MAS, and, consequently, the MAS as an entity will behave
appropriately for its context.

As an example, consider a complex scenario: using a MAS composed of au-
tonomous underwater vehicles (AUVs) to respond to a plane going down in the
North Atlantic. The MAS will need to characterize the debris field, search for
any survivors, and find the airplane’s black boxes. Using a MAS for this is ideal
in many respects, since the area is remote, the environment is hostile, and the
task may take a long time, all things that argue against a human presence.
However, such a MAS faces many practical problems. First, the AUVs must
somehow arrive at the site of the crash. This means that either they must travel
there under their own power, be delivered by ship or submarine, or be dropped
from an airplane, so it is likely some of the AUVs may not survive, or may arrive
very late. Second, since the frequency of crashes is low and the cost of AUVs is
very high, it would likely not make sense to have a dedicated set of vehicles for
this task. Rather, the MAS should be able to use any AUVs that can be made
available by governments, industry, or academia. Thus the resulting MAS will
be heterogeneous, and, due also to the delivery problem, its composition and
capabilities may not be predictable ahead of time. This means that an organiza-
tion for the MAS cannot be devised ahead of time, but rather must be designed
by the MAS itself, on-site. Third, agents by their nature will occasionally fail,
need to refuel/recharge, or be needed elsewhere; others may become available.
Consequently, the composition of the MAS will change over time, which, coupled
with the fact that the environment will be dynamic, the sensors uncertain, and
the agents’ knowledge uncertain and incomplete, means that the MAS will need
to be able to reorganize itself as needed.

Attention to context comes into play in several ways for such a MAS. In-
dividual agents that are aware of the global context can make better decisions
about how to behave within the MAS by matching their local behavior to the
needs and constraints of the MAS as a whole. They can interpret their sensory
information better by making use of knowledge about the global context, for
instance, and they can focus their attention on goals that are most supportive
of the goals of the MAS, either those explicitly known or those inferred from the
context. They can choose actions to take to achieve goals that are appropriate
for the MAS’ context.

Beyond the local behavior of individual agents, however, knowledge about the
global context can directly benefit the MAS as a whole. This is most apparent
for the kind of MAS just described. The problem of designing an organization
for such a MAS is context-dependent. Different organizations (e.g., hierarchies,
teams, etc.) have different strengths and weaknesses depending on properties
of the environment (e.g., uncertainty and change), communication (e.g., band-
width, type of communication channel, whether or not the mission is covert),
and the MAS itself (e.g., how many agents are present, their intelligence level,
etc.). Identifying the global context that is implied by such properties of the



current situation can help the MAS decide which organization or organizations
(if it can merge several) are best.

In past work, we have concentrated on single-agent context assessment and
use, and we have considered the problem of extending this to the multiagent
case by having a single agent design the organization based on its view of the
global context [?]. However, a much better approach, and the one we consider
in this paper, is decentralizing the context assessment process. This removes a
potential single point of failure, offloads from a single agent some of the burden of
context assessment, and makes use of different agents’ viewpoints and contextual
knowledge.

The work presented in this paper is preliminary. We first discuss our overall
approach, called context-mediated behavior (CMB) [1]. We then discuss issues
relating to distributing this process across a subset of agents of a MAS and some
directions we are exploring to address these issues.

2 Context-Mediated Behavior

In context-mediated behavior, an agent’s contextual knowledge is stored in
knowledge structures called contextual schemas (c-schemas).3 Each is a frame-
like structure representing a context, which in our approach is a class of similar
situations, each of which has similar or the same implications for the agent’s
behavior. C-schemas are usually stored in a content-addressable memory (e.g.,
[4]) to allow features of the situation to be used to retrieve c-schemas that are
similar to the current situation.

A given situation can be a member of more than one context. For example,
if an AUV is taking data samples under sea ice while its batteries are low,
then this situation can be viewed as an instance of each of the contexts “data
collection mission”, “under ice”, and “low power”, depending on which contexts
the agent knows about before hand. If this situation turned out to have different
implications about behavior than could be derived from combining information
in the c-schemas, then a new c-schema would be learned for this context and
stored appropriately by relating it to the other contexts.

The process of context-mediated behavior for an individual agent is shown in
Figure 1. We call the part of the agent that does context assessment the context
manager (ConMan). ConMan contains functionality to assess the context as well
as interface with the rest of the agent to distribute the contextual knowledge as
needed.

The overall process of assessing the context is a diagnostic process analogous
to medical diagnosis, where features of the situation (cf. “signs and symptoms”
of medical diagnosis) are used to diagnose the context (i.e., select a context that
can explain the features). We use a differential diagnosis process based on work
in the artificial intelligence in medicine program internist-I [5] that allows

3 The name was chosen to differentiate these schemas from others used in the original
work for procedural and strategic knowledge, p-schemas and s-schemas, respectively
[3].
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Fig. 1. The context-mediated behavior process. For clarity, lines representing informa-
tion flow about situation features into the context manager (ConMan) are not shown.

multiple context hypotheses to be played off against one another to find the best
one(s) that fit the situation.

The process starts when ConMan uses features of the situation to probe its
c-schema memory. This will elicit, or evoke, one or more c-schemas, each of which
is a candidate to represent some facet of the current situation; we can think of
this as ConMan being “reminded” of these c-schemas based on the situation (cf.
[6]).

The next step is to more closely examine and compare the c-schemas to find
those that truly represent aspects of the current context. This is done by com-
paring the c-schemas with respect to the features they predict that are present
and those that are not, and those that are present they do not predict. To do
this, c-schemas are grouped into logical competitor sets [7], each element of which
is a c-schema that can basically explain the same set of situational features. The
hypotheses are scored, and then ConMan attempts to solve the set by increasing
confidence in one hypothesis relative to the others by some given amount. This
is done using various strategies based on those described by Miller et al. [5]. This
is done for each competitor set until ConMan is left one or more c-schemas, each
of which represents part of the context.4

The c-schemas remaining are then merged to create an overall picture of
the context called the context representation, or (CoRe). This is not a simple
problem, since the elements of each c-schema can have various relationships
with each other, such as compatible, overlapping, superseding, conflicting, and
so forth. Note that our approach differs from, e.g., that of [8], who use a simple

4 The process is not quite this simple, since the act of trying to solve a competitor set
can cause the sets to need to be recomputed.



algebra for this purpose (and no differential diagnosis). This aspect of CMB is
an area of active research.

The CoRe serves as the repository for knowledge about the current context.
This knowledge is given to other parts of the agent via ConMan’s agent interface.

After the context is assessed, ConMan monitors the situation, comparing
it to predictions from the CoRe. When it detects a significant change (which
depends partly on the context), the process repeats so that at all times, the
agent attempts to maintain a coherent, current view of the context.

3 Communicating About the Group Context

Given that the kind of MAS in which we are interested is open, meaning agents
can come and go, and that we do not wish to restrict the kinds of agents that
can participate, the first thing we must consider is how the different, likely
heterogeneous, agents can communicate about the group context.

In order for this to happen, the agents obviously must share a common com-
munication language. There are many existing agent communication languages,
and our approach is agnostic as to which to use, as long as all agents have access
to it and the language is sufficiently expressive to carry the knowledge needed.
Second, along with the language, the agents also need to be able to express their
own knowledge, regardless of their internal knowledge representation, in a com-
mon representation that can be transmitted via the language. In our work, we
have used a frame-based representation, and we are now considering augmenting
or replacing this with a description logic. Mastrogiovanni et al. [9] has made a
start toward a situation description language. However, our approach is agnostic
as to this shared representation language as well.

The third thing that is needed is a common ontology for context and con-
textual knowledge. There has been some work on ontologies for context (e.g.,
[10–12]). However, many of these approaches take a simplistic view of context
(e.g., context is location or user task), have a shallow ontology, or both. What
is needed is not only an ontology for contexts per se, but also one that includes
the kinds of things that comprise contextual knowledge for open MASs.

Unfortunately, an ontology of contexts is somewhat difficult to specify a
priori given our approach to context representation. Contextual schemas grew
out of work in case-based reasoning: they are essentially generalized cases. Our
approach relies on an agent being able to update its contextual knowledge based
on its own experience, including modifying existing c-schemas, learning new
relationships between them, and learning new ones. This is supported by the
kind of schema memory we use (e.g., [4]). One can view the c-schema memory
as an evolving, changing ontology.

We can, however, provide agents with a basic ontology for contexts to serve
as the basis for their (ultimately) idiosyncratic ontologies. A start toward such
an ontology is shown in Figure 2. To the extent that the agents do not modify
this “upper ontology”, they will have at least some basis for communication.
Idiosyncratic contexts derived from the agents’ own experiences will need to be



Fig. 2. A starting point for an ontology of contexts. (Figure produced by OntoGraf.)

discussed in relation to a shared upper ontology. Work on how this is to be done
is ongoing.

With respect to the contents of contextual schemas, a shared ontology is
more feasible and straightforward. The classes in the ontology reflect the kinds
of knowledge useful in our c-schemas (and, we believe, for contextual reason-
ing in general), as shown in Figure 3. This includes knowledge about predicted
features of the situation, context-dependent meaning of concepts (e.g., [13]),
event-handling knowledge, knowledge about goal priority (attention focusing
knowledge), knowledge of how to achieve goals, and various behavioral settings
(“standing orders”) that should automatically come into effect in the context.

A key problem for an agent during context assessment is deciding if others
are referring to the same context it is. This is a variant of the reference problem
from natural language processing [e.g., E. Turner and Matthias, 1998]. There
are three possibilities here, if agent A believes the context is represented by c-
schema CA and agent B is believes it is represented by its c-schema CB . First,
CA and CB could actually refer to the same context. Determining this seems at
first glance straightforward, but it is not. The context may be labeled differently
by A and B, for example, if the c-schemas have been learned from their own
experience (and hence, were not part of the common context ontology). Even
if they are labeled the same, the knowledge contained in each may differ, even
about the same context, again due to the differences in the agent’s experiences.
However, if the agents can recognize that their c-schemas represent the same
context, they may be able to synchronize their knowledge.

A second case is when CA and CB are not identical, but each represent
variants of the same context. For example, CA may refer to “in Boston Harbor
on a weekend” while CB is “in Boston Harbor on a holiday”. Here, the agents may
be able to use their ontologies to identify a common ancestor of the c-schemas
(e.g., “in Boston Harbor”) as a basis to begin reasoning about the context.



Fig. 3. A portion of the ontology for contextual knowledge. (Figure produced by On-
toGraf.)

Finally, CA and CB may represent entirely different, possibly incommensu-
rate, contexts. In this case, the agents will need to negotiate to attempt to resolve
the conflict.

This problem, as well as the related problem of ensuring that contextual
knowledge stored in c-schemas is mutually commensurate, is an active area of
research.

4 Deciding How to Distribute the Process

The problem of distributed context assessment is, itself, context-dependent. The
appropriate way to distribute the task is determined by such things as the num-
ber of agents capable of participating, the communication characteristics (band-
width, speed of channel, broadcast versus point-to-point channel, etc.), and the
degree of time pressure. For example, if there are many agents, reasonable band-
width, and no significant time pressure, then distributing the process over all
agents may make sense; if there are only a very few agents capable of partici-
pating, very low bandwidth, or very high time pressure, then it may make sense
to allow one agent to assess the context for everyone.



The first step, then, in distributing context assessment is for each agent to
“pre-assess” the context.5 Depending on the assessment, the agents may have
to seek agreement from others, or the outcome may be so clear that no further
communication is needed. This will depend on the cooperation protocols in use
by the MAS.6

The distribution mechanism may vary as well, depending on the context. For
example, there are four basic tasks for context assessment in CMB: evoke hy-
potheses, form competitor sets, solve competitor sets, and merge the results. Any
or all of these could be distributed, depending on the context pre-assessment.
For example, to reduce communication, the process could be distributed as fol-
lows: agents all evoke hypotheses based on their local context and communicate
the hypotheses to everyone; competitor sets are formed by each agent, with the
(possibly fallacious) assumption that agents will all create the same sets; agents
select which set(s) they will attempt to solve based on some a priori convention
(e.g., an agent might select a set if it was the first to evoke its top hypothesis);
and then the final set of hypotheses would be used for distributed context merger
to create a context representation. In a different context, it might be better to
distribute each of the parts.

At present, we are concentrating on the case in which all parts of the CMB
process will be distributed. Future work will look more closely at this issue of
pre-assessment and context-dependent selection of distribution strategy.

5 Distributed Context Hypothesis Evocation

The first step of context assessment is finding candidate context hypotheses by
determining which c-schemas are evoked from memory based on the situation.
This could be done by a single agent if necessary, but the different viewpoints,
agent knowledge, and c-schema repertoires all argue for having each agent per-
form this task.

Each agent’s evocation of some candidate hypotheses for the global context
is a natural consequence of its own context assessment. (Here, we assume that
distributed context assessment is restricted to context-aware agents.) The prob-
lem is determining which c-schemas have global rather than purely local scope.
This is somewhat harder than it seems. For example, if a local hypothesis is that
the agent is in the context of operating on low power, this would seem to be
a purely local context; however, it may be the case that the global context is
affected by this, as well, since the MAS may need to take into account that some
of its assets (e.g., this agent) may have to leave the system before the mission is
done.

A question also arises of which of the locally-evoked c-schemas should be
shared. While the most general solution would be to share all of them, this may

5 The c-schemas representing this “meta-context” likely will be similar to our earlier
strategic schemas that determined the style of problem solving [3].

6 See [15] for an example of protocols where individual decisions can be followed with
little need for communication.



not be the most efficient, both from the standpoint of communication bandwidth
and computational load on the overall system. It may be best to share only
those that have gone through the local agent’s differential diagnosis process to
become part of its own CoRE; however, this may cause the MAS to miss some
reasonable candidates that were ruled out by the local agent because it lacked
global knowledge that would have included it.

Although the set of agents’ c-schemas evoked this way will be a good source of
global context hypotheses, it may not be sufficient. Some c-schemas might have
been evoked locally by an agent if only it had access to information another agent
has about the environment or other situational features. For example, suppose
agent A has knowledge about operating in a context in which a thermocline
(a temperature/density discontinuity which affects acoustic communication) is
present, but does not observe one from its location, and agent B observes a ther-
mocline, but does not have any knowledge about such a context. In this case,
the information about the environmental feature should be communicated from
B to A. In general, though, it is a difficult to determine what should be commu-
nicated: too much, and the communication channel will possibly be saturated;
too little, and some c-schemas will not be evoked that should be.

It may be that some kinds of information can be identified as generally
evocative, for example, particular environmental features, or the properties of an
agent’s schema memory may predict the value of asking others for particular in-
formation. For example, in a dynamic conceptual memory as we have used in the
past [4, 3], an agent could during memory search identify salient features that, if
it knew their value, would allow it to retrieve important c-schemas. Addressing
this problem in general will be an active area of future research.

6 Competitor Set Formation

The next step is to create logical competitor sets from the evoked hypotheses
by grouping them according to what they explain. As part of this process, the
hypotheses are scored and ranked according to what they do and do not explain.
The issues involved in distributing this process are determining who makes the
decision about which hypothesis belongs in which set and determining which
situational features each hypothesis does/does not explain.

The entire MAS (or rather, the context-aware members) could decide on
the composition of the sets. This could be done by all agents reaching common
knowledge (by communication and possibly negotiation) about the set of evoked
c-schemas, then negotiating about set membership. Alternatively, this process
could progress in a general sense like the process of partial global plan formation
[16]. Agents could each decide on the set of competitor sets, then share this with
their neighbors (by location, e.g., to reduce communication lag time), which then
critique the set based on their own sets and knowledge of what each hypothesis
explains. Over time, a (partial) global set of competitor sets could evolve via
negotiation. Or, finally, the problem of competitor set creation could be divided



amongst the agents by negotiation or convention, as mentioned above. The best
way to do this has yet to be determined.

7 Solving Competitor Sets

Differential diagnosis is used to “solve” the competitor sets to arrive at a final
set of c-schemas. It involves comparing hypotheses within each competitor set
based on what they each explain or fail to explain about the current situation
and gathering new information until one hypothesis exceeds some threshold value
beyond the nearest competitor.

Similarly to the above discussion about distributing context evocation, this
process can be fully distributed or done largely by individual agents. In a fully-
distributed version, the agents would all have common knowledge of the com-
petitor sets and their composition, and they would exchange information about
situational features and negotiate to come to agreement about the scores of the
hypotheses. The agents would also need to gather additional information to solve
the sets, either by eliciting information already known by some agent(s) in the
system or by taking actions (e.g., using a sensor) to gather new information.
With agents having common knowledge about the set being worked on, some
communication might be avoided: an agent that had the requisite information
could just supply it rather than having to be asked.

Another possibility is for the competitor sets to be parceled out to individual
agents for them to solve. This could be done by convention, for example, based
on which agent suggested the topmost hypothesis in a set (with ties also being
broken by convention). Or a more sophisticated distribution could be done, with
the kinds of information needed to solve the set being matched to what knowl-
edge particular agents have. Responsibility for solving a set could even be shifted
among the agents over time based on what information is currently needed to
make progress on the solution.

Regardless of the distribution, the agents will likely disagree on some aspects
of the process, in particular, which situational features are or are not explained
by a given c-schema. Consequently, there will need to be negotiation mechanisms
in place to allow the agents to arrive at some consensus on such issues.

8 Merging Contextual Knowledge

Once all the competitor sets have been solved, the MAS will be left with a set of c-
schemas, each of which represents some part of the current context. The next step
is to merge the knowledge from these to form the overall context representation
(CoRe). Context merger could be handed off to a single agent, but to make use of
all agents’ different knowledge and viewpoints, it should be distributed. Merger
can be done proactively, with all knowledge merged immediately, or more lazily,
with knowledge merged only when needed, e.g., to make a decision about an
aspect of organization design.



Merging contextual knowledge is difficult, especially in the distributed case.
Not only can different c-schemas provide conflicting knowledge (e.g., the pre-
dicted impact of an unanticipated event), but different agents can have different
beliefs about it as well.

We have looked at the former problem to some extent and have some idea
about how to merge knowledge from different c-schemas. For example, if the
knowledge is numerical, depending on the context, it may be reasonable to ab-
stract the information to a range of values or a set of possible values; ranges can
be intersected or unioned, as can fuzzy sets; and symbolic values can sometimes
be merged by appeal to the ontology (e.g., by abstracting to a common ances-
tor). Others, for example, Bikakis and Antoniou [17], have looked at this problem
of conflict resolution in the multiagent case, but the strategies for merger tend
to be much simpler than what we feel is needed. In addition, getting different
agents to agree on which features a c-schema does/does not explain will also be
difficult and will likely involve negotiation.

All agents could participate in all aspects of the merger process. Alternatively,
an agent or a small set of agents could be identified for different elements of the c-
schemas, for example, for event-handling knowledge. It would then be responsible
for merging that portion of the CoRe. The CoRe might itself be distributed this
way, with no agent having knowledge of the whole thing; instead, the agents that
merged portions of the CoRe could be responsible for that portion. Although
this is attractive from the standpoint of reducing any particular agent’s need to
store the CoRE, drawbacks include having possible single points of failure for
some parts of the CoRe as well increasing message traffic to access parts of the
CoRe that an agent does not have.

9 Using the Contextual Knowledge

Once the MAS has assessed the context and has a CoRe available, the contex-
tual knowledge it contains needs to be made available to the agents as they
require it. If the CoRe is disseminated in its entirety to all agents, then this
problem is trivial. However, if not, then an agent needing, say, organizational
design knowledge, would first have to determine where such knowledge resides,
then obtain it. Finding the knowledge could be done easily by giving all agents
common knowledge of which agents are responsible for which parts of the CoRe.
However, since we are interested in an open MAS, that may change over time. A
better approach might be either to have a broker (e.g., [18]) for the information
or to have agents broadcast requests for contextual knowledge, depending on the
communication constraints (which are, of course, context-dependent).

10 Continuous Context Assessment

Creating the CoRe is only one phase of the overall process of context man-
agement. As the situation changes, the MAS will have to assess the context in
response. Thus, in addition to carrying out the tasks assigned to the MLO, the



MLO will also have to devote effort and communication bandwidth to monitor-
ing and assessing the context. For example, in our work on multiagent systems, a
meta-level organization (MLO) first self-organizes in order to design an efficient
task-level organization (TLO) to carry out the mission [15]. In past work, the
MLO disappeared as the system transitioned to the TLO. To add decentralized
context assessment to this approach, the MLO will need to continue in some
capacity as an entity that can continuously assess the context.

11 Conclusions and Future Work

In this paper, we have discussed some issues related to distributed context assess-
ment for multiagent systems, in particular for distributing our context-mediated
behavior approach. As should be apparent, although we have identified impor-
tant issues and some mechanisms to address them, this work is still in an early
stage.

We are currently working to integrate a distributed version of CMB into our
CoDA (Cooperative Distributed AOSN7 control) approach to multiagent organi-
zation/reorganization [15]. Work is currently focusing on developing an ontology
for context and a representation language to allow communication between the
agents and developing the distributed CMB approach described above.

We anticipate that adding contextual reasoning abilities to multiagent sys-
tems will dramatically improve the performance of individual agents as well as
that of the MAS as a whole, in particular by improving the speed and quality
of organization design. Whether or not this improvement is outweighed by the
overhead of distributed context assessment, which may entail adding ConMan
modules to non-context-aware agents, is an open question, although we believe
that it will be worth it. As our work matures, we intend to test this hypothesis
via simulation experiments and experiments using our autonomous land robots.
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