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Abstract
Most multiagent systems (MAS) either assume cooperation on the part of the agents

or assume that the agents are completely self-interested, for example, in the case of
bidding and other market-based approaches. However, an interesting class of MAS is
one that is fundamentally cooperative, yet open, and in which one or more of the agents
may be self-interested. Once self-interested agents are allowed, there is the potential
for an agent to be a miscreant : to behave due to its own goals, either intentionally or
otherwise, so as to be working against the goals and best interests of the MAS itself.
Detecting such agents is tricky, whether directly or via reputation brokers. Approaches
for doing this may work in one situation, yet fail in others. Even more difficult is the
problem of detecting collusion between agents, when two or more work together against
the best interests of other agents or the MAS.

In this paper, we report on a project that is beginning to address this problem
using a context-based approach. Features of the MAS’ situation are used by a subset
of the agents to identify it as an instance of one or more known contexts. Knowledge
the agent(s) have about those contexts can then be used to directly detect miscreant
behavior or collusion or to select the appropriate technique for the context with which
to do so. The work is based on context-mediated behavior (CoMB), and it develops a
new form of collusion detection called society-level analysis of motives (SLAM).

Most work on multiagent systems (MAS) has either assumed that the agents are all cooperative
(e.g., in cooperative distributed problem solving approaches [Durfee(1999)]) or all self-interested
(e.g., in contracting and bidding approaches [Sandholm(1999)]). An interesting case, however, is a
MAS where the fundamental intent is for it to be cooperative, but which may include self-interested
agents. This class of MAS corresponds to many real-world systems, for example open client-server
networks such as the Web, Wi-Fi networks, and so forth. In this kind of system, it is important
to recognize when agents are at odds, either intentionally or unintentionally, with the goals of the
system—when they are, as we term them, miscreants.

Detecting miscreant agents is difficult. It essentially is a problem of trust: Do we trust a
particular agent (1) to be able to abide by the rules of the society, as well as the spirit of those
rules, and (2) to be willing to do so? The first part of trust is called the agent’s capability, while
the second is its trustworthiness.

A very important kind of miscreant behavior is collusion. We define collusion as multiple agents
either acting in unison or according to a secret agreement that in either case violates the intention
of the society. It is essentially unsanctioned coalitions between agents.

There have been many approaches to deciding whether to trust an agent or not. These
fall in several categories: socio-cognitive modeling [Gambetta(1990)]; stochastic game theory ap-
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proaches [Goeree and Hold(1999)]; learning approaches, such as reinforcement learning [Iszuierdo
and Izquierdo(2008)] and genetic algorithm-based [Birk(2001)] approaches; and reputation sys-
tems [Josang et al.(2007)Josang, Ismail, and Boyd]. While each of these works well in some situa-
tions, they do not all work equally well in all situations.

Collusion detection is difficult due to the variety of ways in which it can manifest. For example,
explicit collusion often occurs with the fact of the collusion itself being hidden, for example, by
a priori agreements, by using covert communication channels, or by masking any communication
over shared channels. The agents involved may act differently under different circumstances, and
the time course of their collusive behavior can vary, sometimes to intentionally mask the collusion.
Implicit collusion can occur without any communication between the agents involved at all, and it
is ephemeral: agents that collude in one situation may compete in another.

Even though in general there is great variation in miscreant behavior and collusion, in many
domains there will be patterns that, if identified, can help detect the behavior. A simple example of
this is the case in which two agents are known to have explicitly colluded in the past. When an agent
observes these two agents entering the MAS, then this defines a context in which it should suspect
collusion to be likely. There are other, society-level features as well that define contexts where
miscreant behavior or collusion is likely. For example, in a MAS where there is some competition
between agents for rewards (e.g., some types of contracting systems), there is adequate motive for
self-interested agents to cheat, and implicit collusion should be watched for in which two agents
“gang up” on a leader. We use the term society-level analysis of motive (SLAM) for the process of
detecting collusion and other forms of miscreant behavior using these society-level features.

To capitalize on these patterns of features, we are developing an approach to handling miscreant
agent behavior and collusion based on our prior work in context-mediated behavior (CoMB) for
intelligent agent control [Turner(1998),Turner(1994)]. This approach explicitly represents contexts
that are important from the standpoint of detecting miscreant behavior. These are represented
as knowledge structures called contextual schemas (c-schemas), which in addition to describing
contexts, also contain prescriptive knowledge about how to behave while in the context. One or
more trusted agents in the MAS monitor the situation, constantly attempting to diagnose it as an
instance of one or more contexts it knows. When this is possible, then the c-schemas representing
the contexts can directly provide hypotheses about possible miscreant behavior and collusion as
well suggestions for techniques to detect or confirm such behavior.

Domain

We are primarily interested in open systems in which there is some overall set of rules or
expected standards of conduct, but in which agents are themselves self-interested. Examples of
such systems would include a LAN or a wireless network, artificial markets, open computing grids,
or even the Web itself.

In order to provide a concrete testbed for our work, we chose a toy domain that is simple, yet
still incorporates features applicable to important classes of real-world multiagent systems. Our
domain is a variant of the Liar’s Poker game.

Liar’s Poker is a turn-taking, zero-sum, partially-observable game of dice. Five dice are rolled
to generate a hand that is ranked and bid as a poker hand. In a player’s turn, it makes a concealed
roll and announces a bid, or statement of what hand it has. The subsequent player, called the
challenger, either challenges that bid or accepts it. If the bid is accepted, then it is the challenger’s
turn to bid, with the next player in turn becoming the challenger. If the bid is challenged, then
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if it was a true bid (that is, it accurately represents the hand), then the challenger loses the turn
and a point is transferred from it to the bidder; if it was a lie, then the bidder loses, and a point
is transferred to the challenger. What makes the game more interesting is that on each turn, the
bid has to beat the previous bid. Thus, there is an incentive to challenge bids, since otherwise the
risk of not being able to bid a higher hand passes to the challenger. Play continues until there is a
challenge. After a challenge, a new game begins with the challenger.

In the variant we have chosen, the bidder is constrained to bid the maximum score that can be
composed from the hand. (Thus bidding “two fours” when the bidder in fact had “three fours” is
counted as an untrue bid). This variant was chosen to make the game more analogous to auctioning,
in which the goal is to discover the true utility price of a transaction.

In this domain, we treat lying as the miscreant behavior we attempt to detect. In order to model
some kinds of miscreant agent detection (based on reputation systems), we also allow commenting
on play by agents, where comments can be intentionally misleading. The domain, although simple,
is rich enough to model both miscreant behavior as well as collusion between agents.

A simulator was constructed for this domain [Whitsel(2010)] and various miscreant agent be-
havior detection mechanisms were implemented and compared. What we learned from this was
that no single such mechanism is sufficient in all situations, which led to the current work.

Detecting Miscreant Behavior

Previous work on detecting miscreant behavior typically treats the problem as one of making
social trust decisions. Within this broad category, work has typically focused on three areas: ap-
proaches based on socio-cognitive trust utility, reputation-based approaches, and machine learning
approaches [Ramchurn and Jennings(2005)].

With respect to socio-cognitive trust, Falcone and Castelfranchi [Falcone and Castelfranchi(2001)]
propose a model of belief-based degrees of trust. There are two kinds of trust [Castelfranchi and
Tan(2001)]: trust that the agent is capable of performing as advertised, and trustworthiness, that
is, whether or not the agent will perform what it agrees to. Their approach uses game theory to
determine if we should trust the agent, in this case, enough to delegate to it. This requires the
payoff from the decision to trust to outweigh the belief-weighted payoff of a decision not to trust.

One can define different strategies within this framework (e.g., [Axelrod(1984)]) based on game
theory, such as “always defect”,1 “always cooperate”, “grim trigger” (cooperate until the other
player defects, than always defect thereafter), “tit-for-tat” (defect if the other agent defects, but
cooperate when it cooperates).

Which strategy is appropriate depends on features of the game being played. Axelrod [Ax-
elrod(1984)] showed that the tit-for-tat strategy provides the best results over a large number of
games in the Iterated Prisoner’s Dilemma. For multiple, mixed-motive games in which Nash equi-
libria do not predict what should be done, Macy and Flache [Macy and Flache(2002)] showed that
within a narrow range of aspiration levels, adaptive agents can rapidly converge on a cooperative
self-reinforcing equilibrium (stochastic collusion).

If we treat our toy domain in this manner, then it would suggest that the game will rapidly
converge on a cooperative, self-reinforcing equilibrium in which each agent will be predisposed to
accept the prior bid (cooperate) with the expectation that the next agent will similarly cooperate
with it. Such a game would continue until one agent is finally forced to make an impossible bid.

1In our toy world, cooperating is accepting a bid, while defecting is challenging.
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A clever agent, however, would recognize this and make a bid that would result in the next player
being forced to accept the loss; although this would not directly accrue points to the miscreant
(so-called since it would have to lie to do this), it would reduce its exposure to future risk by
effectively restarting the game, thus reducing the hand it will have to bid on the next round.

An alternative to game theoretic approaches is a reputation-based approach to making trust
decisions. In a reputation-based approach, each action is observed and a record of the participants,
their actions, and the results are stored. Some reputation systems have a central repository, while
others have multiple repositories based on local information. Some systems require direct observa-
tion for the reputation, while others accept witness testimony [Mui et al.(2002)Mui, Mohtashemi,
and Halberstadt,Josang et al.(2007)Josang, Ismail, and Boyd]. An example of a reputation system
is Scrivener [Nandi et al.(2005)Nandi, Ngan, Singh, Druschel, and Wallach], which regulates traffic
in a peer-to-peer (P2P) system.

In our toy system, a reputation system could help a challenger decide what to do based on
what other agents in the system suggest. For example, if an agent says it should challenge, and the
reputation system identifies the agent as capable to make such a suggestion and reputable, then
the challenger might decide to take the advice.

Reputation systems are subject to a number of common attack patterns [HOffman et al.(2009)HOffman,
Zage, and Nita-Rotaru], including self-promoting (false augmentation of reputation), whitewash-
ing (letting reputation degrade, then exiting the system to escape the consequence), slandering,
denial of service attacks, and collusion (orchestrated attacks). Miscreants can seek to avoid the
ramifications of their past actions by one or more of these attacks.

The third class of approaches to miscreant behavior detection is based on machine learning.
For example, Bush–Mosteller reinforcement learning has been used to test machine learning in 2x2
trust games [Iszuierdo and Izquierdo(2008)]. Evolutionary selection has also been used, for example
to solve a continuous-case, n-player Prisoner’s Dilemma using genetic algorithms [Birk(2001)] and,
using clonal selection, for social trust decisions [de Castro and Von Zuben(2002)].

Each of these approaches has its own strengths and weaknesses that determine which situations
it is appropriate for. Elsewhere, we report on simulation experiments that compare the techniques
in our toy domain [Whitsel(2010)] under different circumstances. While no single technique is
appropriate for all situations, the group of techniques can be thought of as a toolbox from which a
MAS can, once the context is known, select the appropriate tool.

In order to give trusted agent contextual knowledge to help it detect miscreant behavior, we must
first pay some attention to which features of the situation have implication for which techniques,
that is, which features define the space of contexts having important implications for miscreant
behavior detection. We have begun to do this, and additional work is ongoing.

One feature that can indicate the likelihood of miscreant behavior is the degree to which the
MAS rewards its participants. When reward for actions is relatively low, there may be little
incentive for even self-interested agents to act in such a way as to circumvent MAS rules. However,
with reward levels being higher, then the motivation to cheat is increased.

Coupled with this, possibly inseparably, is how likely the miscreant behavior is to be detected
and what the consequences would be. If cheating is easy and or if the penalties are low, then agents
are likely to make rational decisions to cheat to achieve rewards.

Another feature that impacts the likelihood of misbehavior is how easily the MAS’ safeguards
against cheating2 can be detected by agents and how effective they are.

2Broadly defined; we also include in this term manipulating the MAS according to its rules, though against its
intent.
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Features of the agents participating in the MAS also affect the likelihood of miscreant behavior.
Obviously, if all the agents are designed by the MAS’ designers, then trust can increase, but the
MAS may be able to reason about the likelihood of cheating even if this is not the case. For
example, if the MAS knows the reasoning abilities of an agent, it may in some cases be able to
predict its responses to the ongoing situation, and so predict whether or not it will behave. Even
when the reasoning processes may not be so transparent, the MAS may be able to reason about
an agent’s likely behavior based on what it knows in general about the class of agent or about the
particular agent, e.g., from past interactions.

Features of the task domain itself may allow the MAS to predict which miscreant behavior
detection techniques are likely to work in the context. For example, if the task is basically a simple
game, then game theoretic approaches may be best used, whereas in other situations (and where
it is possible), reputation-based approaches might be better.

Detecting Collusion

Collusion can be implicit or explicit. Implicit collusion can arise without any formal agreement
between the agents. Indeed, it can arise without any communication (in-channel or out-of-channel)
between the agents at all. For example, two agents may independently realize that a third is close
to a victory in a game or to winning a bid and begin to tacitly cooperate to bring the agent back
into parity, or event or defeat it. Another example would be if agents realize another agent is
weaker than they and so collude to harm that agent to improve their own standings.

Detecting explicit collusion may be as simple as intercepting communication between the col-
luding agents, but this is likely to be difficult. Communication can be encoded, possibly even
to the extent that the fact that it is encoded (which can itself tip off others that something is
amiss) is undetectable. In addition, the communication may be covert, or out-of-channel, com-
munication. For example, an agent might communicate with another by a particular agreed-upon
pattern of movements (for physical agents) that look innocent to others, or by taking actions to
modify some system-level parameter, such as paging rate, I/O rate, or the availability of some
resource [Moskowitz and Kang(1994)] (for software agents).

Since decoding or even identifying collusive communication is likely to be difficult, if not futile,
we take the approach of looking for other society-level features in order to detect both implicit and
explicit collusion. We refer to this as society-level analysis of motive (SLAM).

The question is, what are those society-level features that can be used to allow trusted agents
in a MAS to detect collusion? One possibility has to do with agent actions. Each action can be
characterized as being beneficial, neutral, or harmful to each other agent in the system, as well as
to the system as a whole. If an agent’s actions give a disproportionate benefit to another agent,
then collusion between the two should be suspected.

It is more complicated than it seems to measure the benefits of an action to another agent,
however, due to the time at which the benefit accrues. Actions may give an immediate benefit to
another agent, for example, when a player in Liar’s poker bids the “surrender” hand of all sixes
to let the next player win, or when the player chooses not to challenge the previous player, and
so assumes that player’s risk. On the other hand, an action may have little immediate benefit,
but more later, for example, when a player intentionally under-bids its hand so that a conspirator
later in the playing order does not face a higher bid by the time play gets to it. There are more
possibilities, as well, for when benefits accrue.

We will use a process of disproportionate benefit analysis to detect possible collusion between

5



agents. Actions will be labeled as beneficial, neutral, or harmful by summing their effects over time
on each other agent and comparing the effects to the average level of benefit of all actions in the
society.

A side-effect of this analysis will be to also identify an agent’s aggressiveness even if collusion
is not present. For example, we may find that some agent is always more harmful or more helpful
than is the norm to all other agents, or some particular class of agents. This can be used to help
detect non-collusive miscreants at the society level, and at the individual agent level, it can be
used to adjust an agent’s responses to the aggressive or altruistic agent. In our toy domain, for
example, an agent may use this information to determine that it is likely to be challenged or not
by an aggressive player, which provides a good heuristic for choosing to bid its actual hand or to
lie.

Another feature that can indicate collusion is uncharacteristic behavior by one or more agents,
particularly when paired with other changes in the situation. For example, if a normally neutral
agent suddenly becomes more aggressive or docile when a new player enters the game, then a
reasonable hypothesis is that the two occurrences are linked. While there may be other reasons for
the changed behavior (e.g., a past history of adverse or beneficial interactions with the new agent),
the possibility of collusion between the two agents should at least be considered.

Other features that could be indicative or collusion have to do with detecting paired features
of agents, as one would expect. For example, implicit collusion could be found by measuring the
correlation between actions and comparing that correlation with the societal mean. In implicit
collusion, we would expect, in general, for the agents to take actions that are similar: “ganging up
on” an opponent, for example. On the other hand, for explicit collusion, although this can happen
as well, there is a richer set of behavior available due to the ability of the colluding agents to agree
on their roles and the ability to arrange to share risks and rewards. In explicit collusion, we would
often expect the agents involved to take complementary actions.

Similarly, we would expect some collusive relationships to manifest as paired postures (e.g.,
aggressive/submissive) or as postures of one agent linked to the presence of another agent. For
example, consider a pair of collusive agents in our domain of Liar’s Dice. We might expect to see
one agent intentionally inflating the score of the second by surrendering whenever possible and by
challenging non-cooperating agents aggressively. A pattern another agent would see would be that
of an agent acting weak when interacting with a particular agent and aggressive when interacting
with the others.

Of course, sophisticated agents would attempt to obfuscate explicit collusion. Consequently,
any pairing of actions or postures would have to be detected statistically, over time.

Other attributes of the MAS agents can also serve as features predictive of possible collusion.
For example, agents owned by the same organization or even arriving together into society might
be worth watching for signs of collusion.

Although we have earlier noted the difficulty of detecting explicit collusion, due to the agents
likely attempting to hide communication, a MAS should still be alert to features that possibly
predict that such communication is occurring. An example would be encrypted, nonsensical, or
unexpected message traffic on the MAS’ normal communication channels. Known covert channels
could also be monitored, for example, to look for suspicious patterns of CPU utilization, file locking,
or network traffic. Out-of-character behavior for an agent that occurs soon after a message to the
agent might also be considered suspicious.
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Using Contextual Knowledge

Miscreant behavior, including collusion, is more likely in some situations than others, and it
presents differently in different situations as well. Consequently, the approach we take to miscreant
detection is based on context-mediated behavior (CoMB), which uses a priori contextual knowledge
to determine appropriate behavior in a particular situation. Here, that behavior is the process of
detecting miscreants.

For now, we assume that there are one or more trusted agents in the multiagent system that
are tasked with (or at least capable of) detecting miscreant behavior. Since these agents primarily
use a society-level analysis of motive, we call them SLAM agents. When a SLAM agent detects
such behavior, it is its responsibility to alert the rest of the MAS or in some other way take action.
What action to take, while itself context-dependent, is MAS-dependent. Consequently, it is not
the focus of this paper.

In our approach, a SLAM agent makes use of knowledge about the context to detect miscreant
behavior. In order to do this, it needs to determine what the current context is, a process we call
context assessment.

We make a distinction between a situation and a context. For a MAS, its situation is the sum
total of all features, observable or otherwise, of itself, others, and its environment. The observed
situation is the part of this that it has sensed or otherwise knows about, and the observable situation
is that portion that can be observed. Situations can be grouped, with the members of each group
all having the same or nearly the same implications for the MAS in terms of predictions about
outcomes of actions or events, likelihood of miscreant behavior and the type of that behavior, its
agents’ appropriate behavior, and other inferences that can be made about it, its agents, or its
environment.

These groups of situations are what we mean by context : A context is a class of situation with
important implications for a MAS or its agents. In our domain, example contexts might be: playing
Liar’s Poker when there is an aggressive agent, playing when two known compatriots are playing,
playing when there is a reputation system in place, and so forth. Note that a given situation may
be an instance of more than one context; for example, the MAS might be in the context in which
two known compatriots are playing and there is also a reputation system in place.

Our approach explicitly represents known contexts as knowledge structures called contextual
schemas (c-schemas). Contextual schemas have a descriptive and a prescriptive part. We discuss the
prescriptive part below. The descriptive knowledge describes the class of situation that the c-schema
represents. It also provides predictions about possibly unseen features of the situation which can
help the MAS or its agents appropriately disambiguate new information. It can also provide context-
dependent meaning of concepts; in the autonomous underwater vehicle domain, for example, we
have used this to define the context-dependent meaning of depth for fuzzy reasoners [Turner(1997)]
and neural networks [Arritt and Turner(2003)].

Above, we discussed the features that are important in detecting miscreant behavior and col-
lusion. These features define the space of contexts that are important, and they form the basis for
the representation of the c-schemas.

Context assessment is the process of determining of which contexts a given situation is an
instance. It is a diagnostic process, with features of the situation playing the role of signs and
symptoms and contexts playing the role of “diseases”. The descriptive knowledge contained in c-
schemas is used to diagnose the situation as being an instance of one or more contexts the c-schemas
represent.
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Although any reasonable diagnostic technique would work, we favor the kind of abduction-
based diagnosis found in the work of Feltovich [Feltovich et al.(1984)Feltovich, Johnson, Moller,
and Swanson] and Miller, Pople, and Myers [Miller et al.(1982)Miller, Pople, and Myers]. Features
of the situation evoke particular c-schemas, which are grouped into logical competitor sets (LCS)
whose members (roughly speaking) each explain the same set of features. A differential diagnosis
process then occurs to “solve” the top-ranked LCS by selecting one of its members as a diagnosis of
the situation. New LCS are formed to explain any unexplained findings, and the process continues
until the agent has a set of c-schemas, of each of which the current situation is an instance. The
set of c-schemas is then merged to form a coherent picture of the current context.

Once the context has been assessed, the prescriptive part of the c-schemas will be used to help
the agent or MAS decide how to behave. In general, we are interested using context to help agents
in the MAS decide how to participate in the society as well as how to detect miscreant behavior.
Our prior work in CoMB addresses the former; here, we focus on the latter.

A particular context assessment can directly serve as a hypothesis that miscreant behavior is
occurring. For example, we can imagine an agent knowing about contexts in which miscreant
behavior of various kinds exist. If its context assessment process determines that the current
situation is an instance of one of these contexts, then the agent, with no additional effort, can
directly know that the bad behavior is a real possibility. Depending on the degree of belief associated
with the hypothesis, which will depend both on how strongly the agent believes its assessment and
how strongly the c-schema in question predicts the offending behavior, it may or may not need to
gather additional evidence to confirm the hypothesis.

Note that this is very similar to, for example, medical or other diagnostic reasoning. Determining
the current context—for example, “current patient has pulmonary edema”—is essentially arriving
at the diagnosis.

There are other times, however, when either no such hypothesis is forthcoming from the context
assessment or when the strength of belief in a hypothesis about miscreant behavior is such that
further confirmation is required. In this case, contextual knowledge can still help the agent by
providing suggestions of appropriate ways to detect or confirm miscreant behavior in the current
context.

For example, suppose in our toy domain that two new players arrive whom the trusted agents
have never seen before. There is no a priori reason to suspect them of being miscreants, yet in this
context, it would be appropriate to adopt a more wary security posture. This would be suggested
by a c-schema representing the context, and when this c-schema is determined to be part of the
context assessment, then that posture would automatically be adopted by the agent.

Context can also focus attention on salient features of the situation to take into account when
looking for miscreant behavior. For example, noticing unusual communication is one way to detect
explicit collusion. If our situation has the possibility of a covert channel, then recognizing that
would help the agent detect explicit collusion. This would be the case for underwater vehicles
operating together in an area, where the vehicles’ sonar provides a signalling mechanism, even if
acoustic communication is not in use. An agent might recall a c-schema to characterize this context
that suggests listening to sonar pulses for covert communication between agents. Although this
could have been arrived at via reasoning from first principles, by having it be mediated via context
instead, we automatically get the suggestion as a by-product of context assessment, and we do not
have to reason about this particular covert channel at all in other situations.

Reasoning types and the knowledge for them can also be affected by context, and so c-schemas
can provide information to the agent about how best to behave and about knowledge useful for
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behavior. In our current work on SLAM, we intend to build a dynamic decision network (DDN)
for each other player in the game, adjusting its belief about their attitudes each time an action is
observed. Instead of building these structures from scratch when a new agent enters the system,
we can store parameters of the networks in c-schemas representing contexts involving the agents.
Then, when the agent is seen again, the c-schemas will be retrieved and will allow the networks to
be immediately re-instantiated. This can also be done for classes of agents, so that if we see an
agent we have never seen before, but that we know something about (e.g., who constructed it, its
reasoning style, etc.), we can start with an appropriate DDN that is built for agents of its type.

It is important that an agent always maintains an accurate view of what the context is, even
as the situation changes. This can be done in several ways. First, as we have done in the past
(e.g., [Turner(1998)]), the agent can re-assess its context on a regular basis. When the assess-
ment produces a new set of c-schemas, then the new merged c-schemas become the new context
representation, and behavior changes automatically.

Another possibility is to identify for the domain some set of context change-inducing event
(CCIE) that the agent should look for. Only when these are detected would context assessment be
done, thus saving computational effort. Some examples of CCIEs we have so far identified include:
detection of collusion; change in composition of the MAS (due to, e.g., an agent entering or exiting);
detection of unusual message traffic, either within legal communication channels or via a covert
channel; or, for some kinds of domains, temporal characteristics (e.g., whether we are early in a
problem-solving session or game as opposed to later).

Finally, c-schemas can themselves suggest when the context should change, by providing features
or events either that indicate the c-schema is no longer a good fit for the situation or that directly
suggest other c-schemas that may capture the situation’s context.

We will examine these mechanisms to see which work the best in our toy domain as well as in
general for different kinds of MAS and domains.

So far, we have assumed that there are one or more trusted agents in the MAS whose duty it is
to look for miscreant behavior, much like police do in the real world. Given this assumption, there
are two issues. First, how can the work be distributed across all trusted agents? Does it make sense,
for example, for each of the agents to work separately, or should the agents cooperate to reason
about the situation, including sharing information about what the context is and whether or not
someone is misbehaving? Second, if the watchers are themselves self-interested agents, then there
is the possibility for their goals to lead them to behave as miscreants; who watches the watchers?
Both of these questions will be the subject of work in this project.

We will also consider the question of whether we really need trusted agents in the MAS at all. In
some ways, this seems like an unreasonable restriction on many real-world MAS, e.g., client-server
systems such as the Web in which there really is no central authority to grant this trusted status.
We will consider the situation in which there are no privileged agents, but rather in which some
agents are simply capable, via context-based SLAM, of detecting miscreant behavior. In this case,
issues to be examined include how many agents are needed to be effective, what to do should they
disagree, the level of cooperation between such agents, and how the agents can take action, e.g.,
by attempting to raise the alarm about miscreant behavior or to persuade others to take action.

We have not yet addressed the question of where c-schemas come from in the first place. CoMB
itself has the position that c-schemas are actually generalized cases (in the sense of case-based
reasoning [Kolodner(1993)]) of problem solving, and that they are learned from experience via
similarity-based or other kinds of learning. Learning is not the focus of this work, however, and we
anticipate, initially at least, hand-crafting c-schemas for our agents to use. Future work will look
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at how c-schemas can be learned or modified from experience.

Conclusion and Future Work

Real-world multiagent systems are often neither completely cooperative nor completely com-
petitive, but rather are societies in which there are both individual as well as society-level goals.
While agents can generally be expected to behave appropriately, from the society’s standpoint, the
goal-directed behavior of the individuals comprising the society can often lead them to be mis-
creants, either intentionally or unintentionally. A MAS needs the ability to detect such miscreant
behavior so that its goals are not compromised.

In this paper, we have described a context-based approach to the problem of miscreant behavior
detection that is being developed, in which known contexts are explicitly represented and reasoned
about, and in which the context representations (c-schemas) contain context-appropriate knowledge
the agents can use to guide their decision making. We believe that this approach will allow agents
to more easily detect such behavior by using knowledge that is appropriate to the current context.

Although work on context-mediated behavior, on which this work is based, is somewhat mature,
the work reported in this paper is still in the early stages and is the subject of a PhD dissertation
that is in progress. The short term will see a more complete design and implementation of the
context-based SLAM approach described.

In the longer term, we anticipate this approach being the basis for more general context-aware
multiagent systems. In such systems, context would itself be a first-class object for discussion and
reasoning about by the agents, and context assessment would be a shared activity among at least a
subset of the agents. Such systems would be able to adjust their behavior and possibly their form
to fit their evolving context.

Also in the longer term, we will focus attention on the question of how to learn and modify
c-schemas based on experience. In the case of a MAS, this, too, may be a task shared among the
MAS’ context-aware agents.
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