
LP/Lisp: Literate Programming for Lisp

Roy M. Turner
Department of Computer Science

University of Maine
Orono, ME 04469–5752

rmt@umcs.maine.edu

ABSTRACT
Writing a program and writing its documentation are often
considered two separate tasks, leading to several problems:
the documentation may never be written; when it is, it may
be an afterthought; and when the program is modified, the
needed changes to the documentation may be overlooked.
Literate programming (LP), introduced by Donald Knuth,
views a program and its documentation as an integrated
whole: they are written together to inform both the com-
puter and human readers. LP tools then extract the code
for the computer and the documentation for further docu-
ment processing. Unfortunately, existing LP tools are much
more suited for compiled languages, where there is already a
step between coding and executing and debugging the code.
Lisp programming typically involves incremental develop-
ment and testing, often highly interleaving coding with run-
ning portions of the code. Thus LP tools inject an artificial
impediment into this process.

LP/Lisp is a new LP tool designed specifically for Lisp and
the usual style of programming using Lisp. The literate pro-
gramming file is the Lisp file; LP markup and text resides in
Lisp comments, where it does not interfere with running the
code. LP/Lisp provides the usual literate programming ser-
vices, such as code typesetting, syntactic sugaring, and the
ability to split the code for expository purposes (a “chunk”
mechanism). LP/Lisp, itself written in Lisp, is run on the
code to produce the documentation.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation

General Terms
Documentation, Languages

Keywords
Lisp, Literate Programming, LATEX

Writing a program and writing its documentation are often
considered two separate tasks. This leads to at least three
problems. First, the documentation is often never written.
Second, when it is written, it is often an afterthought. And
third, when the program changes, often the documentation
is not changed, leading to out-of-date and confusing docu-
mentation.

Literate programming was introduced by Donald Knuth to
address these problems [4]. Literate programming views pro-
grams and documentation as a unified whole, and writing
both as essentially writing a work of literature. The pro-
gram and the documentation are written together, with the
goal of informing not only the computer, but also the reader.
Literate programming (LP) tools then process the combined
document to produce either the program, the documenta-
tion, or both.

The first LP tool was Knuth’s own WEB system. The lan-
guages in the combined file—which we will call the LP file—
were TEX to express the human-oriented material and PAS-
CAL to express the program itself. TEX and PASCAL were
freely mixed in the LP file, with some additional notational
markers to denote context and to label pieces of the program
(which are often referred to as chunks).

The LP file itself was neither particularly human-friendly
nor compiler-readable. Instead, two programs operate on
the LP file. One, weave, produces the human-targeted out-
put, in this case, a TEX file that can be formatted and
printed. The other, tangle, produces a PASCAL program
that can be compiled and run. The author does not edit
these files him- or herself, but rather edits the LP file. This
has the beneficial effect of encouraging documentation and
code to change together.

If this were all WEB did, it would be useful, but only some-
what more so than documentation tools such as Javadoc [9].
But WEB did more. For example, it allows the program to be
written in pieces that are interspersed with text describing
those pieces. In the human-readable output (produced by
weave), the code pieces, called “chunks”, are typeset as code
and can be referred to by name elsewhere, including in other
chunks. Chunks can be defined out of order, with respect to
how they appear in the source code, for expository purposes.
In the program output (produced by tangle), the pieces are
gathered together and put into the appropriate location and
order.

This paper appears in the Proceedings of the 2010 International Lisp Conference (ILC 2010), Reno, NV. c© ACM, 2010. This is the
author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in the Proceedings of the 2010 International Lisp Conference (ILC 2010), Reno, NV

There have been many literate programming tools and lan-
guages developed since the original work on WEB. For exam-
ple, cweb [5] (for C, C++, and Java), fweb [6] (for FOR-
TRAN and other scientific programming languages), and
noweb [8, 3] (for general-purpose use). Few have been devel-
oped specifically for Lisp.

In his paper introducing WEB, Knuth listed Lisp as one of the
languages that could be used as the programming portion of
the combined document. While this is undoubtedly true, we
disagree with the spirit of Knuth’s remarks: although Lisp
could be the programming language portion of an LP tool
like WEB, this does not mean that it should be. Or, more
to the point, LP tools like WEB are not really suitable for
interpreted languages like Lisp.1

Why isn’t, say, an excellent LP tool like noweb adequate for
Lisp programs? Let’s first look at the style of programming
that WEB, noweb, and virtually all other LP tools assume.
The author first writes the combined LP file. Then the
author runs an LP tool on the file to produce the docu-
mentation, and another tool (or the same tool with differ-
ent switches) to produce the actual program in the target
language. This assumes that the programmer is using the
write–compile–execute model of programming, and thus it is
very well-suited for programs written in PASCAL, C, Java,
or any other compiled language.

However, this is not how Lisp programmers operate. We
generally write pieces of the program and test them out in
the interpreter. This may lead us to change some other
pieces, which we do in the IDE (Emacs, for example), then
we test those changes out, without ever (or only seldom)
leaving the interpreter. This is one thing that gives Lisp its
power as a rapid prototyping language.

We do not, then, want to have to make our modifications to
an LP file, which is not interpretable, then to have to run the
result through something like tangle. This puts an extra
step in our prototyping and debugging, a very unnatural,
undesirable, compiler-like step.

What we have done with LP/Lisp is to develop a literate
programming mechanism that works with the Lisp style of
programming. Instead of having a separate LP file that gets
processed to produce the documentation and the code, we
take the approach of allowing the Lisp file itself to be the
LP file. Lisp comments, with appropriate syntactic markers,
contain the documentation, written in LATEX. Mark-up con-
ventions are provided to help hide some of the LATEX syntax
so as not to disturb the look of the Lisp comments—so that
for the most part, the comments can serve as documenta-
tion for the programmer as he or she is debugging as well as
fancier (or at least, more well-formatted) printed documen-
tation. LP/Lisp then reads the LP file to produce the pure
LATEX source file that is then processed in the usual way to
produce printed or on-line (e.g., Web-based) documentation.
LP/Lisp is itself written in Lisp.

1And here, we mean languages really like Lisp: ones that
are ideal for rapid idea development and prototyping, or
even “noodling” around to get a feel for a problem. This
rules out languages such as Visual Basic, Java, and, to some
extent, Perl.

In the remainder of this paper, we first briefly touch on
related approaches to literate programming for Lisp. Then
we describe the LP/Lisp model of literate programming for
Lisp, including an overview of the approach, a description
of the markup understood by the program, and a little bit
about the program itself. Finally, we discuss the next version
of LP/Lisp, including syntactic changes and changes to the
implementation.

1. RELATED WORK
The one WEB-like LP tool specifically for Lisp of which we
are aware is CLWEB [7]. CLWEB attempts to overcome
the shortcomings of traditional LP approaches for Lisp de-
velopment. It is a Lisp program that performs tangling and
weaving on a literate programming file containing mixed,
marked-up, TEX and Lisp code. The syntax of the literate
programming file is the same, basically, as cweb.

If this were all CLWEB provided, it would not offer much to
recommend it over using cweb itself. However, it also pro-
vides a Emacs Lisp file (a “.el” file) that defines a CLWEB
mode for use when editing the LP file. Using this mode al-
lows Emacs to understand the LP file enough to be an IDE
for CLWEB, much as Emacs is usually used as an IDE for
Lisp code. This allows the user to deal with the LP file
directly as the source file during development. For exam-
ple, the mode allows the user to evaluate the code within a
section, so that changes can be made and tested without a
complete tangle needing to be done.

As elegant as this approach is, it still has some significant
drawbacks. A program developed in CLWEB is tied to it
for future development of the code. If CLWEB is not avail-
able, then the user will have to edit the tangled Lisp file
directly, since there is no easy way to use the LP file with-
out CLWEB. This might be a problem, for example, when
code is distributed to others for use. It also tightly ties the
literate programming process to a particular IDE, Emacs.
While Emacs is a very good IDE, it may not be the one
preferred by all users. And if it is not, the temptation will
almost certainly be to debug, and hence change, the Lisp
program by using the tangled Lisp source, not the LP pro-
gram. In this case, either the Lisp and LP sources will drift
apart, or the Lisp source runs the risk of being overwritten
by a new tangle.

In addition, while it is likely that much of their functionality
would still be available, it is also unclear how CLWEB would
integrate easily with other parts of even an Emacs-based
IDE, such as SLIME or Allegro Common Lisp’s Emacs–Lisp
interface.2 Consider a user encountering an error at run
time. Most interfaces to Emacs allow the user to request,
from the debugger, that the code corresponding to a func-
tion be edited in an Emacs buffer. Even if the function in
question was developed in an CLWEB LP file, the interface
will almost certainly edit the tangled file instead.

A different approach is taken by Scribble [1] for literate pro-
gramming in the Scheme language (among other things).
Scribble, written in Scheme, basically implements a new

2Emacs Lisp code is provided as part of the mode for interac-
tion with SLIME; however, not all of the possible functions
of the interface are necessarily supported.

language for dealing with both documentation and Scheme
code. It is highly extensible and, at least when paired with
an IDE such as DrScheme,3 provides a natural way to in-
teract with both the textual and code parts of an LP pro-
gram. It is a very impressive system, so much so, that had
we been aware of it when we began work on LP/Lisp, and
had a Common Lisp version been readily available, we likely
would have used it instead of working on our own.

However, that being said, even this very nice system still
suffers from the drawback of needing special-purpose code
(Scribble itself) in order to run the Lisp code. While this
may not be too much of a problem currently—Scribble is eas-
ily accessed and loaded by Scheme—it is potentially a prob-
lem should development or distribution of Scribble cease at
some point. And, of course, as far as we are aware, Scribble
exists only for Scheme, not Common Lisp.

Our approach is similar in some respects to pbook [2], which
is an Emacs Lisp program for generating documentation for
Emacs Lisp programs.4 Like LP/Lisp, pbook embeds the
documentation in comments, with LP markup. From this,
it generates a PDF version of the result.5

There are some differences between LP/Lisp and pbook.
First, pbook is written in Emacs Lisp, not Common Lisp
itself, and so it requires Emacs to work. Second, there is sig-
nificant additional functionality in LP/Lisp usually found in
LP tools (e.g., support for chunks) that is missing in pbook.

2. OVERVIEW OF LP/LISP
We had several requirements for LP/Lisp. First, it should be
as unobtrusive as possible for the Lisp programming process.
This means that the presence of the LP markup should not
detract from the code itself, since the programmer will be
most concerned with reading and changing that during the
development and debugging processes.

Second, we want the LP file to stand alone as a Lisp file
for the reasons discussed above, without the need for special
LP-related language (Lisp) extensions. There should be no
tangle process; the LP file is the Lisp file. A consequence of
this is the LP markup should not detract from the ability of
the unprocessed comments to help the programmer during
programming and debugging. We do not want the program-
mer to have to refer constantly to printed documentation
during programming, but rather to have access to useful
comments.

Third, we wanted the ability to use the full range of a text
markup (specification) language as well as have full control
over the resulting weaved file. The user should not have to
learn special markup just for LP, unless he or she desires,
but instead should be able to use the text markup language
itself. This means, obviously, that the documentation needs
to be hidden from Lisp itself, since we do not wish to have to
depend on Lisp extensions at run- or compile-time to safely

3Now DrRacket; see racket-lang.org.
4Indeed, our next version of LP/Lisp is beginning to look in
some respects like the markup in pbook; see the section on
future work, below.
5[Actually, it generates a LATEX version; PDF was stated
erroneously in the original published paper.]

ignore the documentation. This means that the documenta-
tion needs to live in the comments or in strings interspersed
with the code. We chose comments as the most natural
means of incorporating documentation.

For the markup language supported, we chose LATEX. LATEX
is a very rich, powerful, and widely-used language for spec-
ifying printed material. Not only that, but with the use of
readily-available tools (e.g., latex2html6), LATEX can serve as
an excellent base language from which other formats, such
as HTML, can be derived.

Fourth, we wanted to provide functionality similar to the
chunk facility of WEB-like tools such as noweb. In these LP
languages, it is possible to break code apart for discussion.
For example, a function’s skeleton might be presented one
place in the documentation, with its internal details hidden,
but labeled. In a different place, were it makes sense to
discuss the details, the detailed code would appear. This
is done in most LP tools in a straightforward way, with the
order of code definition following that of the documentation.
The tangle process then puts the chunks in the right order
to create the source file.

Since the LP and source (Lisp) files are the same for us, we
take a different approach. LP markup defines, in the Lisp
source, the start and end of a chunk. These chunks are then
elided automatically when the documentation is processed
and are included in the documentation only when explicitly
referred to.

Finally, we wanted to provide automatically a range of other
facilities that would support the creation of documentation
from Lisp code. This includes line numbering, typesetting
code and comments in different typefaces, automatic index-
ing of functions, and so forth.

3. LP MARKUP
The LP markup in the current, initial, version of LP/Lisp
was influenced both by conventions used in WEB and its de-
scendants as well as in markup languages such as XML.
XML-like tags were chosen, instead of, for example, s-ex-
pressions, for widespread familiarity and because they visu-
ally set off the LP markup in the comments. In addition,
this type of markup can provide both beginning and ending
delimiters, thus making it clear where the documentation
(e.g.) begins and ends.7

Since all LP markup exists inside of Lisp comments, we first
need to discuss comments in general. We distinguish three
types of comments: long, full-line, and partial-line. Long
comments are those begun by the #| character sequence and
ended by |#. Lisp ignores everything between these sets
of characters, making this kind of comment very useful, in
LP, for long sections of LATEX code. Full-line comments are
those lines whose first non-whitespace character is the Lisp
comment character (;). Several of these lines can occur
together, forming blocks of comments or LATEX text. Partial-
line comments are those that occur on a line with some Lisp

6See www.latex2html.org.
7Below, we discuss how we are changing this in the next
version.

;;;

;;; This is a comment.

;;;<doc>

;;; This is not a comment.

;;; Neither is this.

;;; </doc>

;;; But this is.

;;;

(defun foo (bar)

;; Comment...

;;[Not a comment

;;]

;; Comment again

code)

This is not a comment. Neither is this.

[00001] (defun foo (bar)
[00002] ;; Comment...

Not a comment

[00003] ;; Comment again
[00004] code)

Figure 1: Example of explicit-mode markup of documentation. Left, the LP file. Right, the formatted output.

code.

3.1 Documentation Modes
LP/Lisp has two modes. In implicit mode, all long and full-
line comments are considered documentation. The leading
semicolons, if any, are stripped off and the text, apart from
any embedded LP markup, is output directly to the LATEX
file upon processing. In explicit mode, special markup tags
are used to specify which commented text is to be considered
documentation. Full-line comments that are not embedded
in Lisp forms are ignored. They can thus be used for infor-
mation useful during programming that might not be appro-
priate to include in the documentation or for commenting
out sections of Lisp code. All other comments are consid-
ered part of the code and are typeset in the same fashion as
the code itself.

Figure 1 shows this. Note that the
<doc>...</doc>

construction is used to denote documentation. Also note
that there is a shorthand form of this:

;;[...<newline>;;]

This is provided as a convenience. In actuality, either form
is terminated by a non-comment line. Thus, short sections
of LATEX can be included in the documentation as:

(defun foo (bar)

;;[This will appear in the documentation as

;;\LaTeX{}

(print ’hi)

;; And this will appear as a comment in the

;; code

)

In either of these examples, LATEX index entries are created
for the function foo.

The user can specify implicit or explicit mode either by op-
tions to the LP program itself or in the Lisp file itself. In
the latter case, this would be done using the <implicit/>

or <explicit/> markup in a comment.8

8This can be done anywhere in the file, since the entire LP
file is read before any output is produced.

The user can, even in implicit mode, cause the LP program
to ignore sections of code and/or comments. This is done
via the <comment>...</comment> or <ignore>...</ignore>
markup tags. They are identical; alternative forms are pro-
vided for the user’s convenience. Possible uses for this in-
clude skipping details that would be tedious in the docu-
mentation, protecting proprietary code from being printed
in the documentation, or skipping over comments (in im-
plicit mode) and/or code that only make sense to the Lisp
programmer or that is temporary.

3.2 LATEX-Related Markups
LP markup is provided as well to control LATEX, that is, to
include LATEX code in the preamble (i.e., before the

\begin{document}

line) of the LATEX file. Some specific markup is provided for
common options or commands. For example,

<title>...</title>

<author>...</author>

<date>...</date>

are provided to specify the title, author, and date, respec-
tively. The single tag <toc/> is provided to specify a table
of contents. There is also a tag, <complete/>, provided to
tell LP/Lisp to create a complete LATEX file, including the
preamble. If this is not specified (and not requested in the
call to the LP program), then only the portion of the docu-
ment that would appear between the

\begin{document}...\end{document}

tags is generated.

LP markup is provided as well to set LATEX options, such
as 12pt, etc., that appear in the \documentclass command.
These can be set individually, for example:

<option>12pt</option>

<option>landscape</option>

or all at once:
<options>12pt,landscape</options>

Similarly, markup is provided for including LATEX, packages:
<package>alltt</package>

<packages>local,html</packages>

In addition, there is markup (<preamble>...</preamble>)

for including arbitrary LATEX code in the preamble, for ex-
ample, to define LATEX macros.

3.3 Syntactic Shortcuts
There are some syntactic sugaring markups, as well. We
used the same syntax as (e.g.) noweb to allow the program-
mer to specify that something should be typeset in type-
writer text, which is a fairly standard convention used to
indicate, e.g., a token of the language being described. For
example,

This is a [[token]].

will produce:
This is a token.

on output.We have also provided sectioning markups (cf.
WEB):

[[* This is a section *]]

[[** This is a subsection **]]

and so forth, which produce
\section{This is a section}

\subsection{This is a subsection}

and so on.

A final kind of syntactic sugar allows the programmer to
visually set off definitions in both the Lisp code and the
typeset documentation. For example, this:

;; <function read-input(filename)>

;;

;; This function reads all input from

;; the file [[filename]] ...

produces:

Function read-input(filename)
This function reads all input from the file

filename

This definition markup is defined for functions, methods,
classes, generic functions, variables, parameters, and macros.

3.4 Definitions and Chunks
LP/Lisp provides facilities for reordering the LP file to pro-
duce the documentation. There are two such facilities, defi-
nitions and chunks.

Whole sections of LP markup—documentation and code—
can be defined one place in the LP document, then included
elsewhere. This is useful, for example, to avoid cluttering
the Lisp source file with the introduction for the documen-
tation. In this case, the introduction might be defined at
the end of the document, after all the Lisp source code, but
included via a markup directive at the start of the written
documentation.

The programmer makes a definition by naming a section of
the LP file using the define tags:

;; <define name="intro">

;; \section{Introduction}

;;

;; This document describes LP/Lisp (Literate

;; Programming/Lisp), a Lisp ...

;; </define>

The definition can be included in the file elsewhere using the
insert tag. For example,

;;<insert name="intro">

;;<insert name="sect1">

;;<insert name="sect2">

would insert three definitions in order in the output after
processing their embedded LP markup, if any.

The other method of reordering output is via the chunk
mechanism, which is very similar to other LP systems, e.g.,
noweb. Chunks are named pieces of Lisp code. Unlike defi-
nitions, they are meant to aid the flow of the written docu-
mentation, and their names are exposed to the reader. They
are usually used to hide details of code at one place so as
not to detract from the overall description, then to describe
the code elsewhere.

This is perhaps best shown by example. Figure 2 shows the
chunking mechanism in LP/Lisp.

4. THE LP/LISP PROGRAM
The LP/Lisp program is itself written in Lisp, with LP
markup, and the user guide [10] was created by running the
program on itself. The program was written in Allegro Com-
mon Lisp (ACL);9 we intend to make future versions more
Lisp-independent, or at least allow them to run in multiple
Lisps. Some modifications will be necessary for it to run un-
der other Lisps, primarily involving the calls to the regular
expression package. The current version of the program is
written in plain Lisp, that is, it is not object-oriented. The
next version that is being written is fully object-oriented.

LP/Lisp is defined in its own package (lplisp). Thus, the
user can load it via ACL’s require function (provided that
it is correctly installed to do so) or load, then use it with
whatever other programs he or she is writing. The primary
interface to LP/Lisp is the make-latex function, which has
an extensive set of keyword parameters in addition to the
file to be processed. Using the parameters, the user can:

• tell LP/Lisp to create a complete LATEX file;

• insert a table of contents;

• set LATEX options and packages;

• set the title, author, and date;

• set the documentation mode (implicit or explicit);

• set the directory into which to put the LATEX file;

• tell LP/Lisp to get rid of extraneous blank lines in the
code to save whitespace in the LATEX document; and

• specify whether or not to allow LATEX to be embedded
in the Lisp code or not.

The last option may need some explanation. By default,
LATEX is allowed in Lisp code, including the partial-line com-
ments and full-line comments embedded within functions or
other Lisp expressions. However, it is entirely possible that
there will be character sequences in the Lisp code itself that
will cause LATEX to have errors when it is run. For example,

9Franz, Incorporated; www.franz.com.

;;;

;;; <function factorial(n)>

;;;

;;; The [[factorial]] function is likely the

;;; most-used example of recursion.

;;;

(defun factorial (n)

(cond

;;<chunk name="base case">

((<= n 1) 1)

;;</chunk>

(t

;;<chunk name="recursive step">

(* n (factorial (1- n)))

;;</chunk>

)))

;;; The base case is simple, just a check for

;;; $n=1$ or less:

;;;<insert-chunk name="base case">

;;; The recursive step is just $n\times (n-1)$:

;;;<insert-chunk name="recursive step">

Function factorial(n)

The factorial function is likely the most-used example
of recursion.

[00001] (defun factorial (n)
[00002] (cond
[00003] <<base case>>
[00004] (t
[00005] <<recursive step>>
[00006])))
[00007]

The base case is simple, just a check for n = 1 or less:

[00008] <<base case>>=
[00009] ((<= n 1) 1)

The recursive step is just n× (n− 1):

[00010] <<recursive step>>=
[00011] (* n (factorial (1- n)))

Figure 2: The chunking mechanism. Left, the LP file. Right, the formatted output.

this was a problem in the LP/Lisp program itself, since it
has many LATEX commands in one form or another in some
of the strings in the code. To avoid these sorts of errors,
with the slight drawback of less pretty comments, the user
can disallow processing within these kinds of comments.

In addition, a “shell script” interface to LP/Lisp is also pro-
vided, using the ability of Allegro Common Lisp to be in-
voked using the #! first-line convention provided by Unix-
like operating systems. The lplisp shell script contains Lisp
code to load LP/Lisp and call make-latex with arguments
taken from the script’s command line arguments.

5. CURRENT AND FUTURE WORK
We are currently in the process of revising and re-implement-
ing LP/Lisp. As mentioned, we are changing the program
to be fully object-oriented. This should make the code much
cleaner and easier to modify and understand.

We are also changing the syntax of the LP markup. Our
experience with the current syntax is that it is more cum-
bersome than need be. We do not need, in general, the full
generality of something like XML. Moreover, it is usually
clear, both to the reader and to the LP program itself, what
the scope of a given kind of markup is, and hence, there is
seldom need for ending delimiters. For example, a <doc> tag
usually does not need the corresponding </doc> tag, since
the documentation generally ends at the end of whatever
comment it is a part of, and not before.

Furthermore, the tags are distracting for the reader. This
is important, since one of our goals is to allow the com-
ments containing the LP markup to be useful and readable
to someone reading the Lisp file itself.

Consequently, in the version of LP/Lisp currently being im-
plemented, the markup looks more like the lighter-weight
markup in WEB and its descendants, although it differs in the
details and the semantics. LP/Lisp commands are prefixed
by the @ character, for example, with a bare @ denoting the
start of a section of documentation. Where possible, we are
trying to ensure that such things as section headers, func-
tion definition headers, and so forth are visually appealing
and useful when reading the LP file itself.

Figure 3 shows samples of the old and new syntax for com-
parison.

We are also making this version of LP/Lisp much more cus-
tomizable than the first version. The markup will be almost
completely customizable. This includes the way commands
are denoted—the user can, via setting LP/Lisp’s global vari-
ables, even change the @ character to whatever he or she
wants. Sectioning can be changed as well, and the range of
syntactic sugaring for fonts (or almost anything else) will be
customizable, as well. For example, the defaults for type-
writer font, boldface, and italics look like:

[[typewriter]], <<boldface>>, and __italics__

However, the user could decide to change these to other
things, for example:

typewriter, !!boldface!!, and
(startital italics endital)

The way this flexibility is implemented in the new version
also has the beneficial side-effect of loosening the connection

;;;[[* Example *]] ;;; @* Example
;;; ;;;
;;; <function factorial(n)> ;;; @function (factorial n)
;;; ;;;
;;; The [[factorial]] function is likely the ;;; The [[factorial]] function is likely the
;;; most-used example of recursion. ;;; most-used example of recursion.
;;; ;;;

(defun factorial (n) (defun factorial (n)
(cond (cond
;;<chunk name="base case"> ;;@chunk base-case
((<= n 1) 1) ((<= n 1) 1)
;;</chunk> ;;@end chunk
(t (t
;;<chunk name="recursive step"> ;;@chunk recursive-step
(* n (factorial (1- n))) (* n (factorial (1- n)))
;;</chunk> ;;@end chunk
))))))

;;;<doc> ;;;@
;;; The base case is simple, just a check for ;;; The base case is simple, just a check for
;;; $n=1$ or less: ;;; $n=1$ or less:
;;;<insert-chunk name="base case"> ;;;@show-chunk base-case
;;; The recursive step is just $n\times (n-1)$: ;;; The recursive step is just $n\times (n-1)$:
;;;<insert-chunk name="recursive step"> ;;;@show-chunk recursive-step
;;;</doc>

Figure 3: Comparison of LP markup in versions 1 (left) and 2 (right) of LP/Lisp.

between LP/Lisp and LATEX. As the input file is parsed, set-
tings of the customizable variables tell LP/Lisp what strings
to look for (e.g., for a new section) and what to replace them
with in the text markup output. There is nothing that re-
stricts this translation to LATEX; the translation could in-
stead be to (e.g.) HTML. In order to complete the tran-
sition to another kind of text markup output, the method
that outputs the text markup would need to be replaced
with one for the chosen target language.

It would also not be too difficult to modify the parsing por-
tion of LP/Lisp to allow it to parse other interpreted lan-
guages, such as Python, that could also benefit from a non-
WEB-like literate programming tool.

6. CONCLUSION
LP/Lisp is a literate programming tool for Lisp. Literate
programming offers many advantages for writing, maintain-
ing, and communicating about programs. However most LP
tools are targeted toward compiled languages that naturally
have a step between writing and executing the code, so LP
processing can be inserted in that step without seriously
impacting the code writing and debugging process. Lisp
programming is different, and so a different LP approach
is needed. Since LP/Lisp expects LP markup and text to
reside in the comments of the program, the natural Lisp pro-
gramming model is unaffected, involving as it does highly-
interleaved program modification and testing. Instead, LP
processing is done only to produce the documentation, not
the code.

The result is a very easy to use, non-intrusive means of lit-
erate programming for Lisp. LP/Lisp has been in use in our
lab for about a year. This experience is currently guiding
our re-implementation of the tool.

The current and future versions of LP/Lisp will be available
at our Web site10 and possibly other distribution channels
(e.g., SourceForge, github, CLiki, etc.). A technical report
describing LP/Lisp [10], produced by running LP/Lisp on
itself, is also available there from our site.

7. ACKNOWLEDGMENTS
The author is deeply grateful to the anonymous reviewers of
the submitted draft of this paper for their invaluable com-
ments, information, and advice, and especially for pointing
the author to related LP systems he was unaware of.

The author would also like to thank the members of Maine-
SAIL (the Maine Software Agents/Artificial Intelligence Lab-
oratory), especially Erik Albert and James Brawn, for using
and providing feedback on LP/Lisp. We are particularly
grateful to Erik Albert for some modifications of LP/Lisp
he carried out as a result of using it.

8. REFERENCES
[1] M. Flatt, E. Barzilay, and R. B. Findler. Scribble:

Closing the book on ad hoc documentation rules. In
The 14th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2009), Edinburg,
Scotland, August 2009.

[2] L. Gorrie. pbook.el – Format a program listing for
LATEX. Available via the Web, www.bluetail.com/~
luke/misc/emacs/pbook.pdf (accessed 3 October
2010), 2004.

[3] A. L. Johnson and B. C. Johnson. Literate
programming using noweb. Linux Journal, pages
64–69, October 1997.

[4] D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

10MaineSAIL.umcs.maine.edu

[5] D. E. Knuth and S. Levy. The CWEB System of
Structured Documentation. Addison–Wesley, Reading,
MA, third edition, 2001.

[6] J. A. Krommes. FWEB: A WEB system of structured
documentation for multiple languages. Web:
http://w3.pppl.gov/~krommes/fweb_toc.html.
Accessed 7 August 2010., 1998.

[7] A. Plotnick. CLWEB: A literate programming system
for Common Lisp. In Proceedings of the European Lisp
Symposium, Lisbon, Portugal, 2010.

[8] N. Ramsey. Literate programming simplified. IEEE
Software, 11(5):97–105, 1994.

[9] Sun Microsystems. Javadoc tool. Available via the
Web, http://java.sun.com/j2se/javadoc (accessed
26 July 2010)., 2010.

[10] R. M. Turner. Literate programming in Lisp
(LP/Lisp). Technical Report 2010–02, Department of
Computer Science, University of Maine, 5752 Neville
Hall, Orono, ME 04469–5752, January 2010.

