
To appear in the 2007 ACM Technical Symposium on Computer Science Education (SIGCSE’07). c© ACM (2006). This is the author’s
version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.

Retaining Majors Through the Introductory Sequence

Elise H. Turner, Erik Albert, Roy M. Turner, and Laurence Latour
Dept. of Computer Science, University of Maine

Orono, ME, USA 04469∗

Abstract
Retention is an important issue for Computer Science De-
partments. In many cases students leave the major due to
frustrations with programming in the complex languages of-
ten used in CS1 and CS2 or because they do not understand
that computer science is much more than programming. We
have redesigned our introductory sequence to include a rig-
orous, non-programming introduction to the field and a CS1
course which uses Scheme so that students can focus on the
principles of programming instead of the complexities of a
particular language. In the first year that we have required
these courses in our major, we have had positive results.
In this paper, we describe what we have learned through
discussions with students and student surveys.

Categories amd Subject Descriptors
[K.3.2][Computer and Information Science Education] [Com-
puter science education]

General Terms
Design

Keywords
Retention, CS1/2, Non-Programming Introductory Computer
Science

1. INTRODUCTION
In Academic Year 2005-06 at the University of Maine,

we have begun to require a new sequence of introductory
courses designed to emphasize conceptual information about
computer science and programming over the complexities of
a particular language. We expected these courses to better
prepare students for upper-level courses in the major, specif-
ically by teaching them to focus on conceptual issues instead

∗The first author is the contact author and can be reached
at eht@umcs.maine.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07,March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

of simply completing specific software projects. We also
hoped that these courses would help students gain an un-
derstanding of what computer science is so that they could
decide early if the major was right for them. Although we
expected to lose some students in the first year of the pro-
gram, we expected the new sequence to help us retain tal-
ented students, especially women, who were interested in
computer science. Since requiring the new curriculum, we
have seen a significant increase in the percentage of com-
puter science students who successfully complete the first
year and plan to continue in the program. Although we
have a fairly small program, we believe that these prelimi-
nary results are worth discussing in this time of decreasing
enrollments.

In this paper, we discuss why we believe our introductory
sequence helps us to retain students. We begin in Section 2
with our reasons for changing the curriculum and a brief
description of the courses. In Section 3, we present the re-
tention data for our courses and information gained from
students. We conclude in Section 4 with a summary of our
work.

2. DESCRIPTION OF COURSES
Before the new curriculum was required, Computer Sci-

ence majors were required to take standard, programming
intensive CS1 and CS2 courses using C++. Introduction
to Computer Science 1 (Old-CS1) was the CS1 course, and
Introduction to Computer Science 2 (Old-CS2) was the CS2
course. Old-CS1 was required for our majors and some ma-
jors in the engineering school. It could also be used to fulfill
a requirment in several different programs. The course was
difficult to teach because of the disparity in the skill level of
students entering the class. On the one hand, a significant
number of students came to the class with significant pro-
gramming experience, often in C++. On the other, large
numbers of students had little or no experience with com-
puters other than using the World-Wide Web, playing video
games, and using applications such as word processors and
spreadsheets. This was largely due to the disparity in op-
portunities for studying computing in Maine high schools.
So many students, often women, who were talented but in-
experienced were put at a severe disadvantage. It was also
beginning to appear to faculty advisors that talented prob-
lem solvers who were capable programmers were leaving the
major because they found programming tedious and had
not been shown that there was more to computer science.
Through lengthy discussion with our advisees, we came to
believe that both talented women and talented men most

often left the major for this reason. It was also the case
that students who were most interested only in program-
ming were frustrated by upper-level courses that required
them to understand the theoretical and conceptual founda-
tions of computer science.

In an effort to help students to choose an appropriate
major, and to better prepare them for upper-level courses,
we began to teach Foundations of Computer Science (CS-
Intro). The course was first taught in Fall 2002. At that
time it was not required. It has been taught each Fall since
then, becoming a requirement in the new curriculum in Fall
2005. When the course was not required, a disproportionate
number of students took it in place of our remedial program-
ming course. These students were placed in this course be-
cause they had no programming experience and no substan-
tial experience with computers of any kind, and they were
not prepared to take Calculus I. As a result, it is difficult
to compare information about retention during those early
years with information about retention after the course was
required. However, the course had a lower drop-out rate
than the first semester programming course. Most of the
people who dropped CS-Intro were those who reported on
beginning of the semester surveys that they were interested
in only programming, technical certification, or some other
non-computer science, computer-related area. Most women
who had taken CS-Intro expected to remain in computer sci-
ence or other STEM (Science, Technology, Engineering and
Mathematics) majors at the end of the course.1 Although
the numbers were small, our discussions with women who
had taken CS-Intro [1] suggested that the course would help
us to retain women in the major. In addition, discussions
with all students and student surveys suggested that stu-
dents had a better understanding of the discipline and be-
came more committed to their major after taking CS-Intro.

However, there were still problems with retaining students
through our previous Old-CS1 and Old-CS2 courses. Stu-
dents who had done well in CS-Intro still suffered the same
kinds of problems in Old-CS1 and Old-CS2 that had been
seen at our institution and elsewhere. Average students who
had not programmed often found the course overwhelming
and could be intimidated by those with more experience [2,
3]. Talented students, even those who had taken CS-Intro,
continued to drop the major because they found program-
ming tedious and the Old-CS1 course lacking in intellectual
challenge [4]. Our Curriculum Committee had already be-
gun to discuss a major curriculum revision to strengthen
our program, and so we tried also to address these concerns
when developing our new introductory sequence.

This led us to several changes:

• CS-Intro became a required course so that students
would have an early understanding of the discipline,
including the types of problems computer scientists
address and how they address them.

• Old-CS1 was replaced by Introduction to Problem Solv-
ing using Computer Programming (CS-Prog). The lat-
ter used Scheme as an introductory language so that

1Five out of seven expected to remain in (or, in one case,
transfer to) the major at the end of the course. One trans-
ferred to Electrical Engineering Technology because she was
more interested in hardware than software, and one was in-
terested mostly in programming. One transferred into the
Electrical and Computer Engineering Department.

students could focus on general programming concepts
instead of the syntax of a particular language and to
level the playing field for students with no previous
programming experience.

• Old-CS2 was replaced with Introduction to Object-or-
iented Programming and Design (CS-OO) using Java.
Lectures in the course focused on object-oriented pro-
gramming and design, and Java was taught in recita-
tions. This was done so that students would begin to
build the skills needed to learn new languages quickly,
and so they would begin to make generalizations about
programming languages.

• Courses were named to reflect the focus on general
principles to remind students that there was more at
stake than simply learning a language. Old-CS1 and
Old-CS2 were renamed to indicate that they were pri-
marily programming courses, not general introductions
to computer science.

• CS-Intro’s enrollment was limited in size so that stu-
dents and faculty would get to know each other, and so
that students would feel comfortable asking questions
about the course material or the major both in and
out of class.

• Recitation sections were added to the classes. This
allowed students to meet in small groups and to get
more individual attention. It also allowed students to
get to know the graduate teaching assistant so they
would feel comfortable asking questions.

• Tips for studying and writing exams (e.g., how to write
definitions, how to prepare for an exam) were given in
class. And, in the first semester, in-class time was
devoted to reviewing for the exams and discussing the
exams when they were handed back.

In the remainder of this section, we discuss each of the
new courses in more detail.

Foundations of Computer Science

This course is a rigorous, non-programming introduction to
computer science, described in detail in [5]. The course is
unlike most non-programming introductions because it is
neither a high-level survey nor a pre-programming course.
Instead, students study core areas of computer science by
learning about specific techniques used to solve fundamen-
tal problems in the area. The areas currently covered in
the course are: digital logic, organization and architecture,
programming languages, operating systems, and networks.
Students have a brief exposure to professional ethics in a net-
works topic on privacy. In each section, after a brief overview
of the area, students study three to five topics in detail.
Topics include Karnaugh maps in digital logic, Booth’s algo-
rithm in organization and architecture, Backus-Naur form in
programming languages, semaphores in operating systems,
and Hamming codes in networks.

Topics are presented as solutions to specific, important
problems in the field. Most topics are covered at the same
depth that would be seen in an upper-level introductory
course in the area. For example, students learn why Kar-
naugh maps work, how to construct them, and how to use
them to minimize circuits. Homework and exam questions

as well as slides for a topic are often taken from the cor-
responding upper-level course. Because students work with
the material at this depth, they are able to understand how
computer scientists approach problems and to see that com-
puter science is not just programming.

Although non-majors and more senior students have been
successful in the course and have given it positive evalua-
tions, CS-Intro is designed for first-year Computer Science
majors. The course is structured to instill good study habits
in the students and to help them to succeed [5]. In addition,
we explicitly teach students good study habits. Class size is
intentionally kept small so that the instructor and the stu-
dents can get to know each other, and so that students feel
more free to participate in class and to contact the instructor
or teaching assistant outside of class.

Introduction to Problem Solving using Computer Program-
ming

This course is very similar to a standard CS1 course. The
course introduces students to programming, using Scheme,
and to data structures and algorithms. We follow [6] in mak-
ing the design and use of abstract data types an important
part of the course.

The course, and its name, are meant to help students
understand the role of programming in computer science.
Students complete programming assignments as homework,
culminating in a large project that is to be designed (and im-
plemented, if time allows) at the end of the semester. Exams
and quizzes cover mostly conceptual information related to
programming, data structures and algorithms. Using this
approach, we expect students to be able to generalize what
they have learned in order later to learn new programming
languages and for them to recognize programming’s role as
a necessary tool for computer science.

The course is required for our first-year students, for first-
year students in the University of Maine’s New Media pro-
gram and for students in the Business School’s Management
and Information Sciences program. Consequently, class sizes
are larger than they have been for CS-Intro. However, here
again, we try to support their growth as students. All stu-
dents are required to attend small recitation sections each
week so that they will have an opportunity to get to know
the teaching assistant. Students are also encouraged to go
to the instructor’s office hours with questions. As in CS-
Intro, the instructor devotes some class time to good study
habits, especially those related to programming classes.

Introduction to Object-oriented Programming and Design

CS-OO is a four-credit course that is both an introductory
course in the Java language as well as an intensive introduc-
tion to the process of designing and implementing programs
as systems of interrelated objects. Because of this additional
object-oriented design component, it differs from the tradi-
tional introductory computer science (programming “in the
small”) course. Students find it a challenge not only to de-
sign and implement small programs, but also to decompose
larger problems into modules that can then in turn be im-
plemented independently as small programs. All projects in
the course have elements of both small-scale and large-scale
programming.

The prerequisite for this course, CS-Prog, uses the rela-
tively syntax-free Scheme programming language in order to
facilitate learning basic algorithmic problem solving princi-

ples. This allows CS-OO to put greater emphasis on large-
scale programming concerns. Students initially find the rel-
atively syntax-heavy Java language to be a challenge, but
then, fairly quickly, realize the real problems lie in the pro-
cess of separating a system properly into concerns and then
implementing the resulting objects and object interfaces.

3. FEEDBACK FROM THE FIRST YEAR
In its first year, our new curriculum increased retention

in our major as measured by the size of the sophomore class
and by the number of students who successfully completed
the required, year-long programming sequence. The data
shown below include both first-year college students and
transfer students who were enrolled in our first semester
courses. The data also include students enrolled in both our
Bachelor of Science (B.S.) and Bachelor of Arts (B.A.) pro-
grams. The programs are very similar in terms of Computer
Science requirements, with the B.A. program requiring two
fewer (three instead of five) Computer Science electives and
less science and mathematics. Students currently are admit-
ted into the B.S. program unless they request to be admitted
into the B.A. program. However, students often move be-
tween the B.S. and B.A. programs, especially early in the
program. So, distinctions between B.S. and B.A. students
are mostly meaningless at this stage.

Twenty-five first-year majors entered the program in Fall
2005. In Fall 2006, the program had twenty-five sophomore
majors. In only one of the previous five years, had there
been as many or more majors in the sophomore class than
in the preceeding first-year class. Figure 1 shows the number
of students in the first-year and sophomore class enrolled in
the major in the fall for each of these years. The number of
first-year students entering our program dipped in Fall 2002
and dropped further in Fall 2004, inreasing slightly in the
following two years. We believe the decrease in enrollments
reflects the national trend, but it is unclear why enrollments
increased so dramatically in Fall 2003. It is interesting to
note, however, that while the number of first-year majors
increased by 150% from Fall 2002 to Fall 2003, the number
of sophomores in Fall 2003 increased by only 105% of the
number of first-year students in Fall 2002.

Class 2001 2002 2003 2004 2005 2006
First Year 66 36 54 18 25 27
Sophomore 47 44 38 27 15 25
% Retained 67% 105% 50% 83% 100%

Figure 1: Computer science student enrollment and
retention data. Numbers reported are for the fall
of the year. “% Retained” is the number of sopho-
mores as a percent of the previous year’s number of
first-year students.

Figure 1 shows the students officially enrolled in the ma-
jor. This includes students who are waiting to transfer into
another major, students who are on a leave of absence, or
students who are taking courses abroad or elsewhere. This
number also does not reflect the success of students in the
major. However, because it does not track individual stu-
dents, it allows us to recognize students who transferred to
our major after taking our first semester course.

Figure 2 shows the percentage of students who have suc-

cessfully completed the required programming sequence in
one year. We consider a student to have successfully com-
pleted a course if he or she received the required grade of
C or better. These numbers reflect the percentage of stu-
dents who continued to pursue the major after taking the
first semester course. These numbers include only computer
science majors and undecided students. They do not include
students who were in the first semester course in a different
major and then transferred into computer science to con-
tinue the sequence. The figure also shows the students who
successfully completed the first semester of the sequence.
There were 24 computer science students entering the new
curriculum in Fall 2005 and enrolled in CS-Intro/CS-Prog.
There were 19 (79%) who enrolled in CS-OO in Spring 2006,
with 15 (79%) who completed it, all with a grade of C or
better.

It is more difficult to obtain comparable data for our old
curriculum, partly because our data include students re-
taking the courses. In addition, since students often transfer
into the major during their first or sophomore year, and be-
cause a student’s class is listed in enrollment data based on
credits earned, not time in or progress through the major,
some students take first-year computer science courses even
though they have sophomore, junior or senior standing. We
can, however, look at sequences of Old-CS1 and Old-CS2 in
sequential semesters.

Contiguous
Curriculum Sequence

F04–S05 Old 6.94
S05–F05 Old 7.4
F05–S06 New 28.6

Figure 2: Percent of COS and undecided students
successfully (grade ≥ C) completing, by starting
semester, the first course of the old and new cur-
ricula as well as percent successfully completing the
sequence in contiguous semesters.

We look at Old-CS1 and Old-CS2 for the past two years.
Because these courses served other majors as well as our
own, they were taught each semester. These courses had
been taught for many semesters before those shown, and
some students repeated Old-CS1 and/or Old-CS2 several
times. We count as Old-CS1 students any student in the
Computer Science major who enrolled in Old-CS1 during
the semester being described who had not previously taken
Old-CS1 within the past two years. We count as Old-CS2
students any student counted as an Old-CS1 major who took
Old-CS2 the following semester. As with students in the
new sequence, this does not include students who left the
program but will return.

With such small numbers of students, student surveys are
our best source of information about success in these courses
regarding our objectives related to retention. Students com-
pleted these surveys during the last class period of the sem-
ester. They also completed University course evaluations
on the same day. Students were given the option of includ-
ing their names on the surveys so that we could correlate
feedback with grades received in the courses and other in-
formation that we had gleaned from discussions with these
students. Of the 25 students remaining in CS-OO at the

end of the semester, nineteen completed surveys. Of these
seventeen were Computer Science majors.

Most students expected to continue in the major after the
first year. Few students were not successful in the course.
Most who seriously considered dropping the major did so
because of a lack of interest in computer science instead
of a misunderstanding about the major. Of the seventeen
Computer Science majors who completed surveys, only one
had transferred out of the program and only four others re-
ported considering dropping the major. One of these three
did not successfully complete any of the required courses in
the first year. The student who planned to transfer reported
that in response to “The thing that keeps me in the com-
puter science major is.” The other students circled “do” in
the statement “When I get really frustrated I (do/do not)
think of dropping the major...” of the three that gave a
reason, only one gave the reason of not being interested
in building systems. Another said that he was not sure of
his life goals. The final student’s frustration stemmed from
not feeling comfortable with Java, despite a high grade in
CS-OO. However, through discussions with this student we
know that she is not seriously considering dropping the ma-
jor, and has returned as an enthusiastic Computer Science
major in Fall 2006.

CS-Prog was meant to give students an introduction to
the principles of programming so that they were prepared
to handle the complexities of the language when program-
ming in Java. This was because, from discussions with ad-
visees, faculty believed that many students felt overwhelmed
in Old-CS1 because of the language. This was particularly
true of women, but was true of many men as well. These
students often were frustrated enough by the complexities
of the programming language that they dropped the major,
even if they were doing well enough to successfully complete
the course.

Although six students said syntax was the most difficult
thing that they learned in CS-OO, only three of these stu-
dents gave a syntax-related response when asked to fill-in the
blank in “I get frustrated in class .” Of the sixteen
students2 who responded, only seven filled in the blank with
a response related to programming (including syntax); the
other nine gave answers related to how the class was man-
aged. This suggests that allowing students to understand
programming before tackling complex languages helps stu-
dents to overcome the frustrations of programming in these
languages.

Students also appear to understand that CS-Prog was in-
tended for this purpose. Of the eighteen people who re-
sponded to, “What do you think is the main purpose of
[CS-Prog]?” fifteen indicated that it was to introduce stu-
dents to general principles of programming, such as “pro-
gramming basics” or “object-oriented perspective.” Only
three students mentioned the language specifically or the
sytax of the language.

All of the Computer Science majors, except the one who
transferred, gave reasons for staying in the major. Two stu-
dents who had discussed their frustration with programming
with their academic advisors cited CS-Intro as their reason
for staying in the major. Eight students in the survey listed
as their reason for staying factors not related to program-
ming such as general interest in the subject, being intrigued

2Both majors and non-majors

by computer science, or the desire to take advanced courses.
So, CS-Intro seems to play a role in helping students put
the frustrations of programming in perspective.

It is important to note that of the three students who
gave programming as their reason for entering the major,
one was transferring to a department which better matched
his interests. Hopefully, CS-Intro allowed this student to
make an informed decision about his major. Since he was
successful in CS-Intro, but did not do as well in that course
as in CS-Prog or CS-OO, it is quite possible that he made a
good decision. The other two students responded that they
are remaining in the program because of programming.

We should see the story of the two students who remain
in the major because of their interest in programming as a
cautionary tale. Some students simply love to program and
want to learn more about computers so they can be more ca-
pable programmers working on more interesting problems.
The one student who identified himself on the survey did
well enough in CS-Intro to understand what will be expected
of him in upper-level courses in the major. However, if he
did not take a programming course in addition to our non-
programming course, he may not have remained interested
in the major. We must be careful that we do not lose stu-
dents who are most interested in programming, but who are
capable problem solvers, in order to retain students who are
most interested in problem solving.

Many studies indicate that women, disproportionately,
have difficulty in courses like Old-CS1 and Old-CS2. From
our discussions with women who have taken Intro-CS, it
appears that most develop a great deal of enthusiasm for
computer science. This seems to help them get through
the frustrations of programming in languages like Java and
C++. However, this also appears to be true of most of the
men who take the course. In the future, we hope to look
more closely to see if there are gender-based differences in
students’ reactions to the new curriculum or in retention
rates.

4. CONCLUSIONS
After reading student surveys and talking with students,

we believe that our new introductory sequence will help us
retain students in the Computer Science major and help
students determine if the major is right for them. We will
continue keeping data about retention through the major,
and add information that will allow us to differentiate con-
tinuing majors from transfer students. In the future, we will
be interested in how our new curriculum affects recruiting
students into the major, recruiting and retaining women in
the major, the quality of students that are recruited and re-
tained in the major, and the students’ performance in upper-
level courses.

5. ACKNOWLEDGEMENTS
Thanks to members of our Curriculum Committee who

are not authors of the paper: Tom Byther, our chair, Phillip
Dickens, Edward Ferguson, and Carol Roberts. Many thanks
to Ellen Johndro for helping us gather enrollment data and
for making all of our lives easier while this paper was being
prepared. We also thank the anonymous reviewers for their
helpful comments.

6. REFERENCES
[1] E. H. Turner, C. Emerton, R. Ray, and C. Logan. A

rigorous introduction to computer science without
programming: Three women’s perspectives. Technical
Report UMCS–TR–2004–2, Department of Computer
Science, University of Maine, 5752 Neville Hall, Orono,
ME 04469, 2004.

[2] L. J. Barker, K. Garvin-Doxas, and M. Jaskson.
Defensive climate in the computer science classroom. In
The Proceedings of the Thirty-Third SIGSCE Technical
Symposium on Computer Science Education, pages
43–47, New York, NY, 2002. Association for
Computing Machinery, Inc.

[3] B. C. Wilson and S. Shrock. Contributing to success in
an introductory computer science course: A study of
twelve factors. In The Proceedings of the Thirty-Second
SIGSCE Technical Symposium on Computer Science
Education, pages 184–188, New York, NY, 2001.
Association for Computing Machinery, Inc.

[4] M. Barg, A. Fekete, T. Greening, O. Hollands, J. Kay,
and J. H. Kingston. Problem-based learning for
foundation computer science courses. Computer Science
Education, 10(2):109–128, 2000.

[5] E. H. Turner and R. M. Turner. Teaching students to
think like computer scientists. In Proceedings of the
Technical Symposium on Computer Science Education
(SIGCSE’05), St. Louis, MO, February 24–27 2005.
Association for Computing Machinery (ACM).

[6] H. Abelson, G. J. Sussman, and J. Sussman. Structure
and Interpretation of Computer Programs. MIT Press,
Cambridge, MA, second edition, 1996.

