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Abstract
The CoDA (Cooperative Distributed AOSN control)

project at the University of Maine has as its goal
the creation of intelligent control mechanisms for
multi-AUV systems. Our target domain is the control of
autonomous oceanographic sampling networks (AOSNs)
[Curtin et al., 1993]. We draw on and extend techniques
from distributed artificial intelligence, particularly
cooperative distributed problem solving, and multiagent
systems. A primary focus of the work is developing
protocols and mechanisms to allow AOSNs and other
multi-AUV systems to self-organize to fit their mission
and situation, then reorganize as necessary when there
are changes.

Over the past several years, we have developed a
two-level, protocol-based approach to AOSN control that
provides both flexibility and efficiency. Ameta-level
organization (MLO) self-organizes from among the
more intelligent agents present, then designs atask-level
organization to fit the current situation and system
capabilities. As necessitated by changes to the system
and situation, the TLO can either adapt to changes or
initiate a new MLO to design a new TLO to fit the
changed situation.

This paper discusses the CoDA project. So far, we
have concentrated on the development of the cooperation

1We are deeply grateful to the Office of Naval Research
for the generous support of this work through grants N0001-
14-96-1-5009 and N0001-14-98-1-0648. The content does
not necessarily reflect the position or the policy of the
U.S. government, and no official endorsement should be
inferred. The authors can be reached via e-mail at
rmt@umcs.maine.edu . For further information, see
MaineSAIL.umcs.maine.edu .

protocols for agents to use during the system’s operation,
a task-assignment mechanism to assign agents to mission
tasks, and organization design techniques for multi-AUV
systems. We discuss our approach, the project’s current
status, and plans for future work.

INTRODUCTION

Multiagent systems (MAS) are collections of
autonomous or semi-autonomous agents that (typically)
cooperate to carry out some set of tasks. For this paper,
agentis used in its traditional artificial intelligence (AI)
sense: an entity that perceives its environment, embodies
a (rational) decision process, and takes action. Examples
of agents are software robots (softbots), avatars, and
other such software entities; humans; and, most germane
to our purpose here, mobile robots such as autonomous
underwater vehicles (AUVs) and other instrument
platforms.

There is growing interest in and research on
multiagent AUV systems, as evidenced by this workshop.
There are many applications for multi-AUV systems,
including uses in in ocean science, pollution monitoring,
global change monitoring, industry, and the military.

Most current multi-AUV systems are capable of
relatively simple missions involving only a few, usually
homogeneous, AUVs. We are interested, on the other
hand, in future AUV systems that:

• are able to perform their missions
autonomously or semi-autonomously;

• are able to self-organize to fit their mission
and situation;

• can be composed of many heterogeneous
AUVs and instrument platforms;

• can be deployed for long-duration
missions;
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• are open—that is, agents can come and go
as needed (e.g., as they fail or are needed
elsewhere); and

• are highly flexible—capable of taking
on different missions during their
deployment and able to cope with
changing situations, possibly by
reorganizing.

Such systems could be deployed for long-duration
ocean science data-gathering and monitoring, for
surveillance of hostile territory, for detection of
terrorist activity in a harbor, or even for aquaculture or
other industrial purposes. For example, autonomous
oceanographic sampling networks (AOSNs), first
proposed by Curtinet al. [1993], are just such
multi-AUV systems.

There are three major aspects of MAS:
intelligent control of the individual agents, interagent
communication, and cooperation mechanisms. Each of
these is the subject of research projects at MaineSAIL
(Maine Software Agents and Artificial Intelligence
Laboratory). The Orca Project [e.g., Turner, 1995]
focuses on intelligent mission control for AUVs, and
other projects look at interagent communication. The
subject of this paper, the CoDA Project, focuses on
cooperation.

CoDA (Cooperative Distributed AOSN control) [e.g.,
Turner & Turner, 1998; Turner & Turner, 2001], has as
its goal developing intelligent control mechanisms for
multi-AUV systems, in particular AOSNs. The roots
of CoDA extend back to the MAUV Project [Albus,
1988] at the Marine Systems Engineering Laboratory
(MSEL),2 which fielded two EAVE-III AUVs [Blidberg
& Chappell, 1986], and the MAVIS Project [Turneret al.,
1991], which worked on techniques for cooperative
photography by two AUVs. CoDA focuses on developing
the organization mechanism and cooperation protocols
to enable intelligent control of large, long-duration
multiagent systems, including AOSNs.

In this paper, we describe the CoDA project. We
discuss the project in general, then the major pieces
that focus on cooperation protocols, task-assignment
mechanisms, organization design and redesign, and the
CoDA simulation testbed. We then discuss future work.

CODA OVERVIEW: A TWO-LEVEL

ORGANIZATION SCHEME

We are faced in our task domain with the problem of
needing an organization that is both flexible and efficient.
Flexibility is important initially, since the composition

2Indeed, the original name of CoDA was MAUV.

of the system may not be known a priori. For example,
in a rescue or plane crash scenario, the AUVs might be
deployed by air or by submarine, and all of the vehicles
might not arrive at the same time, or at all. Flexibility
is also important when the situation changes, since the
way the vehicles were organized may no longer be
appropriate. For example, if an AUV fails or is taken out
of service (e.g., for preventive maintenance), its sensor
suite will no longer be available to the AOSN, and the
system must compensate. Efficiency, on the other hand,
is important during accomplishment of the mission goals.

Unfortunately, there is an inherent trade-off in any
organization between flexibility and efficiency. For
example, a hierarchical organizational structure may be
quite efficient for some tasks, yet not be able to adapt
easily to changed situations—what Malone [1987] called
vulnerability costs. Other structures, such as committees,
may be quite adaptable and flexible, but not particularly
efficient.

To address this trade-off, CoDA takes the approach
of using a two-level approach to organizing the agents.
When initially deployed, a subset of the agents follow a
protocol to self-organize into a flexible, loosely-coupled
meta-level organization(MLO). Which agents can
participate (theMLO agents) is determined by which
agents know the appropriate protocol, which in turn is
determined in large part by the intelligence of the agent.
The purpose of the MLO is to determine the resources
available for carrying out the AOSN’s mission, then
to design an efficient organization to actually do the
mission. This organization, thetask-level organization
(TLO), then receives control from the MLO and conducts
the mission.

A TLO will be highly-tailored to fit the current
mission and situation (e.g., available sensors, types of
agents, environmental conditions, etc.). Most TLOs
will have some inherent ability to handle at least slight
changes to the situation or mission. However, since a
TLO is designed for efficiency, there will occasionally be
times when the situation or mission changes enough that
the chosen organization is no longer a good fit. When
this happens, the TLO initiates the formation of a new
MLO, which then redesigns the TLO or creates a new
one.

Figure 1 shows the overall two-level organization
scheme.

COOPERATIONPROTOCOLS

In order for AUVs to participate in a CoDA-controlled
system, they must be able to follow CoDAcooperation
protocols. A protocol in this sense is essentially set of
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Figure 1: CoDA’s two-level organization scheme. [From Turner & Turner, 2001; used by permission.]

rules that govern how an agent responds to and otherwise
interacts with the other agents in the system.

Different agents have different protocols, based
largely on their intelligence level. For example,
sophisticated AI agents will be able to fully participate
in a meta-level organization, so they will need protocols
to allow them to know how to behave during MLO
formation and operation. Other agents that may lack
sufficient intelligence will need other protocols to allow
them to play their more limited part in the MLO.

Agents need different protocols at different times, too.
We divide the normal operation portion of a multi-AUV
mission controlled by CoDA into the following phases:

• MLO formation phase
• MLO discovery phase
• TLO design phase
• TLO work phase

In addition, there are phases corresponding to when there
are changes or things go badly:

• agent entry phase
• agent exit phase
• error phase
• MLO reformation phase

The following paragraphs deal with each of these in turn.

MLO formation. To give a flavor of what a protocol
is, we will present in some detail the protocol for MLO
formation; other phases will be described more briefly.
This phase of operation begins when agents arrive at
the mission work site and ends when an MLO has been

formed. The protocols for this phase3 assume that an
agent has no knowledge of the other agents that might be
present.

A state machine-like representation of the MLO
formation protocol is shown in Figure 2. When an
agent is initialized or arrives on-site, its first task is to
determine if there is an existing organization present.
If so, it should contact that organization to join; if not,
it should attempt, with other MLO agents that may be
present, to create an MLO.

Toward this end, the agent first broadcasts a special
message type (“organization-present?”), then waits for a
reply. During the wait, if it hears other agents also trying
to determine if there is an existing organization, it takes
no action other than to remember their identities. This is
how it begins to build a picture of who is in the water with
it.

If an existing organization (MLO or TLO) replies
within the time-out window, then the agent follows a
different protocol for entering an existing organization.
If not, then the agent proceeds to the next step,
broadcasting an “initiate-MLO” message. It assumes as
a first approximation that the only MLO agents present
are those from whom it received messages while it was
waiting, and it proposes this set of agents, plus itself, as
the members of the MLO. It then waits.

While it is waiting, if it receives an “organization-
present?” message from an agent, it then adds that agent
to the potential members of an MLO and re-broadcasts

3Here we discuss primarily the protocols followed by the
MLO agents.
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Figure 2: MLO formation protocol for MLO agents. [After Turner & Turner, 2001.]

its own “initiate-MLO” message with the updated list.
If it receives another agent’s “initiate-MLO” message,
then there are two cases. If the members proposed by
the other agent are a subset of what it proposed, then
there is a meaningful conflict—the other agent does not
know about one or more other agents. The agent then
should re-broadcast its message to ensure that the other
agent learns of those agents. If the other agent’s message
instead contains a superset of the agent’s known MLO
members, then it need do nothing except update its own
idea of who should comprise the MLO. Note that since
there are a finite number of agents and this process is
monotonically increasing, it will ultimately terminate.

After a sufficient waiting period with no conflicting
messages, then the agent decides that it and all the
other MLO agents present have now come to common
knowledge and agreement about who will comprise the
MLO, and it proceeds to the next phase.

One flaw in the existing protocol is that there is
no defined response when an agent is in the second
wait state and receives a response from an existing
organization. When this happens, the agent should
abandon its goal of establishing a new MLO and join the
existing organization. This is indicated by a dotted line
in the figure, and will be added to a future version of the
protocol.

Protocols are currently implemented in our simulator
(see below) in the CLIPS expert system shell language
[Giarratano, 1993]. The current MLO formation protocol
requires 19 CLIPS rules, one of which is shown in
Figure 3. This rule is tailored for a simulation of the
aggregate properties of a system of agents following the
CoDA protocols; a similar rule or its equivalent would
exist in an agent that was actually following this protocol.

MLO discovery. After the MLO is formed, it needs

to determine what the mission is and what resources it
has available. We assume that at least one MLO agent
knows the mission and can tell the others. Discovering
the resources is more difficult.

First, a MLO agent broadcasts its own location to the
MLO, then it broadcasts a message (“whos-there?”) that
will cause a non-MLO agent, following its own protocol,
to respond with its location. There are two versions of
the MLO discovery protocol currently implemented; the
version discussed here is hierarchical. Since each MLO
agent knows where it is and where all its peers are, it can
decide when it hears a response from a non-MLO agent
if it is the closest MLO agent to it or not. If it is, it
becomes the “controller” for that agent, in the sense that it
is responsible for knowing about its capabilities. Toward
that end, it exchanges messages with the agent to learn its
capabilities.

At the end of this phase, which is determined by
coordination via broadcast messages and wait states, the
total resources available to the MLO are known, although
not necessarily by any one agent.

TLO design. This phase of the process is responsible
for analyzing the needs of the mission and the available
resources (agent capabilities), then designing a task-level
organization that is appropriate. In the current version of
the protocol, a single agent, called the planner, is chosen
via a convention (lexically lowest name) to be responsible
for designing the organization. In future versions, the task
of design will be distributed among several of the MLO
agents.

The planner determines which capabilities (e.g.,
sensors, behaviors, etc.) are needed for the current
mission, then asks the other MLO agents which of
themselves or their controlled agents can contribute one
or more of those capabilities. Once it has received the
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(defrule initiate-MLO-conflict1
"Receive nth initiate-MLO message and experience a conflict."

?vip <- (vip (name ?agent) (status new)) ; if there is a new agent who
?msg <- (knows ?agent ; received an

received-message ? ; initiate-MLO
initiate-MLO $?members); message with a member list

?fact <- (knows ?agent others-exist ; and it already has knowledge of
$?others) ; the existance of others and

(test (<> 0 (length $?others))) ; my idea of the
(test (<> (length $?others) ; mlo list is NOT a

(length (union ; subset of the
$?others ; set of
$?members)))) ; $?members

=>
(retract ?msg) ; remove the message
(mlo-msg "%s: initiate MLO received; conflict." ?agent)
(kill-timer ?agent wait-for-response2) ; kill previous 2nd timer
(retract ?fact)
(assert (knows ?agent others-exist (union $?others $?members)))
;; broadcast nth "initiate an MLO" message:
(mlo-msg "%s: scheduling re-broadcast of nth initiate-MLO message." ?agent)
(broadcast ?agent initiate-MLO (union $?others $?members))
;; and set a timer that governs how long to wait:
(mlo-msg "%s: setting timer 2 to wait for replies." ?agent)
(set-timer ?*mlo-formation-no-response-timeout2* ?agent wait-for-response2)
)

Figure 3: A CLIPS rule for the MLO formation phase.

replies, it designs the TLO accordingly.

In the current version, organization design is done
very simply. First, agents are assigned to mission tasks
based on their capabilities using a mechanism described
in a section below. Then, a management structure is
created. This is a simple hierarchy composed of agents
having management capabilities. In the future, the range
of organization structures possible will be expanded and
the organization design mechanism will be enhanced
along the lines discussed in a section below.

After the organization is created, the agents are
informed of their assignments, the top-level manager is
told to begin work, and the MLO is dissolved. In future
work, we will investigate the utility of having the MLO
remain active at a low level even while the TLO exists.

TLO work phase. During this phase, the mission
is carried out. Protocols for this phase have not been
well worked out yet, since we have so far concentrated
primarily on organization and reorganization.

Agent entry. When a new AUV enters the AOSN,
it needs to follow a protocol to allow it to become part
of the existing organization. If there is no organization
present, then this is the same as the MLO formation

protocol. If there is a TLO present, then the agent tells
the top-level manager about its capabilities, and the
manager then decides what to do with it. One possibility
is to add it to a list of slack resources for later use.
Another possibility, to be explored in future work, is for
the TLO (or MLO, should it be decided to leave it intact)
to recognize that the new agent’s capabilities will allow
the AOSN to better accomplish its mission. In this case,
agent assignments would be modified or, in the extreme
case, the TLO would be dissolved and re-designed.

Agent exit. Agents will often leave a long-duration
multi-AUV system. This could be due to failure, the
AUV being needed elsewhere, the AUV requiring
replenishing of resources (e.g., power), or the AUV
requiring preventive maintenance. Agents will either
know ahead of time that they are about to exit or else will
exit abruptly, with no warning (e.g., an agent suddenly
fails). A protocol is needed for agents when they know
they need to exit, and protocols are necessary for other
agents to follow to handle the agent exit. In addition,
the top-level manager of the TLO4 needs a protocol to
follow when it knows it needs to exit.

4In the current version of CoDA; future organizations may
not have the equivalent of a top-level manager.
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In the current version of CoDA, if the top-level
manager realizes it needs to leave the system, it
causes the overall system to transition back to the
MLO formation protocol to re-create the meta-level
organization. This is a bit extreme, and should be
reconsidered in future: it is quite possible that a better
approach under some circumstances would be to select
another agent to fill the top-level management role. If
the manager exits abruptly, then, like some other MAS
protocols [e.g., Smith, 1980], it is up to its subordinates
to notice that the manager is gone. This may happen,
depending on the work phase protocol in use, when the
manager fails to respond to status messages, requests for
information, etc. In this case, the subordinate’s protocol
directs it to first ask the other agents (via a broadcast
message) if anyone disagrees with re-forming the MLO,
waiting, then, if no one does, initiating MLO formation.

If an agent exits that is not the top-level manager,
and it has time, then it tells the top-level manager (in a
hierarchical TLO) that it is exiting. If it does not have
time, then it is up to its manager to notice that it has
exited. the manager then sends the top-level manager a
message notifying it of the problem. It is then up to the
top-level manager to decide if it can repair the TLO or
not. If not, then it initiates the re-formation of the MLO.

Error. Errors in carrying out the mission are not
addressed in the current CoDA protocol suite. This will
require a more sophisticated model of the mission and the
organization than currently exists.

MLO reformation. The re-formation of the MLO
is triggered, as discussed above, by messages from an
agent within the TLO when it recognizes that something
is seriously wrong. Since we assume that the agents are
cooperating and not malicious, the current protocols
allow any agent to send the re-formation message, and,
once it is sent, the other agents then switch to their MLO
formation protocols. Unless the triggering agent is the
top-level manager, it will first ask others if they disagree
before issuing the message. In the future, we will need
to address the situation in which the triggering agent is
wrong about the need to re-form the MLO and how other
agents can disagree. Depending on the application of
the multi-AUV system being controlled, consideration
may be needed to agents being non-cooperating or even
malicious.

ORGANIZATION OF MULTI -AUV SYSTEMS

A hard problem for multi-AUV systems is how
organize the resources such that the mission is
accomplished efficiently. This is the task of the MLO
in CoDA. We first describe the current mechanism for

organization design, then discuss our planned version.

Currently, all TLOs are hierarchical, and the
mechanism for creating the TLO is very simple. As
discussed above, a planner is selected from among the
members of the MLO, and it designs the organization.
First it runs the task-assignment algorithm (see below)
to assign agents to mission tasks based on matching
their capabilities to what the task needs. Then, based
on the heuristic that every task needs to be managed,
it creates the management structure from the bottom
up by assigning agents management roles. An agent
can have both worker and manager roles, since the
requirements for these different roles (e.g., sensors
versus communication and decision-making abilities)
may not overlap significantly. When a task has more
assigned agents than any single manager can manage,
then a middle-management “pseudo task” is created.
A heuristic used is to prefer managers for a task to be
selected from among the agents assigned to the task.
Other heuristics are possible, of course, for example,
selecting nearby agents to manage tasks, etc.

The current organization design mechanism was
meant to be a place-holder until we could turn our
attention to the real thing. We have begun work on the
actual organization design mechanism, which is based
both on the organization design literature and on work
done in a related project on context-sensitive reasoning.

Human organizations, although not completely
isomorphic to multiagent systems, are still a rich source
of ideas about how to organize cooperative collections
of agents to solve problems. Early work on distributed
AI began looking at human organizations [e.g., Malone,
1987; Fox, 1981]. In addition to making use of that
work, we have begun looking at the organization design
literature in order to identify kinds of organizations
that may be appropriate for multi-AUV systems. For
example, we are currently using a simple hierarchy,
but other organizational structures that show promise
include teams, committees, and markets, as well as
mixed organizational types. Others have studied the use
of some of these for MAS as well [e.g., Tambe, 1997;
Smith, 1980; Sandholm, 1993].

We also look to the organizational design and
distributed AI (DAI) literature to help determine
the situational features that make one organizational
structure favored over another. For example, markets are
good for situations in which little may be known about
some agents [Smith, 1980] or in which there are likely
to be agent failures [Malone, 1987] or high complexity
[Fox, 1981]. Alternatively, hierarchies are likely better in
those situations in which it may be necessary to compel
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an agent to perform a task that is not in its own best
interest [cf Fox, 1981].

As a starting point for organization design, we are
investigating the use of a technique for organization
selection adapted from our other work on context-
sensitive reasoning,context-mediated behavior(CMB)
[Turner, 1998], which is part of the Orca Project. In
CMB, an agent’s knowledge of how to behave is largely
contained in knowledge structures calledcontextual
schemas, or c-schemas, that represent classes of
situations in which the agent has or may operate. For
organization selection, the c-schemas would in addition
be indexed by features of the multiagent system (e.g.,
number of agents, their type, etc.) and would contain
knowledge about the kind of organizational structure that
is appropriate for the situation.

A major task in CMB is identifying the current
context, which may include finding and merging several
c-schemas that each represent the current situation. This
is done using a diagnostic algorithm that uses the features
of the currently-observed situation as “symptoms” that
predict and confirm a diagnosis of the context [Arritt &
Turner, 2003]. Situational features are used to probe
a content-addressable memory of c-schemas. Building
on work done in medical AI, the c-schemas are grouped
into logical competitor sets(LCSs) [Miller et al., 1982;
Feltovichet al., 1984], each of which contains c-schemas
that (roughly) explain the same set of features. Each
c-schema is scored based both on theevoking strengths
of the features that retrieved it, i.e., how strongly those
features “brought it to mind,” as well as the predictions
that were violated and confirmed. The topmost LCS is
then “solved” by gathering additional information or
making additional inferences to separate one diagnosis
from the others. Then the process repeats, until there are
no unexplained features and no LCSs that are unsolved.

In medical diagnosis, the solutions to the LCSs
comprise disease or diseases the patient is suspected
of having. In CMB, on the other hand, the c-schemas’
information is merged to give an overall picture of the
current situation. Information from the merged context
is then used to control the agent’s behavior or, in this
case, to suggest appropriate organizational structures for
the TLO. The organizational structures suggested would
then be used as the starting point for designing the TLO,
either by selecting the best one, or by merging two or
more of them.

In future work, we will further elucidate and
implement this scheme for organization design. In
addition, we will investigate how to distribute the task of
organization design among several or all of the agents in

the MLO.

TASK ASSIGNMENT

A key task of multiagent system control is assigning
the appropriate agent to each task. This is a particularly
vexing problem in multi-AUV systems of the type
in which we are interested, since the agents are
heterogeneous. This means, for example, that most
existing AOSN techniques [e.g., Phohaet al., 1997;
Smith et al., 1996] would need to be extended for these
types of multi-AUV systems.

The task assignment problem is amenable to
constraint-based reasoning techniques. Tasks require
particular capabilities, and agents provide those
capabilities. Each capability (e.g., a particular sensor
type, such as a side-scan sonar) required by a task can be
considered a variable whose domain consists of those
AUVs having that capability. Constraints would be
represented as links (arcs) between variables or AUVs,
for example, to indicate when two capabilities cannot be
used simultaneously, to indicate an AUV cannot be in
two places at once, or to represent resource constraints.

However, there are some properties of these
multi-AUV systems that are problematic for standard
constraint satisfaction problem (CSP) techniques [e.g.,
Freuder, 1988], such as those for job-shop scheduling
[Fox, 1987]. For example, each agent has multiple,
possibly independently-assignable capabilities (e.g.,
sensors, communication ability, localization ability,
etc.), as well as resource constraints, and there are
multiple ways to accomplish many tasks (e.g., use
conductivity-temperature-depth (CTD) sensors or
temperature sensors, etc.).

Magnet-
ometer

CTD

Sonar

C-AUV2

C-AUV1

Domain: {AUV1, AUV2}
Resources: 4

Domain: {AUV1, AUV2}
Resources: 5

Domain: {AUV2}
Resources: 3

Figure 4: A constraint graph with two AUVs, two
constraints, and three variables corresponding to
capabilities required for a task.

In addition, constraints are not solely between CSP
variables, as is standard, but also between an AUV and
all the task capabilities (CSP variables) in whose domain
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it appears. For example, Figure 4 shows a portion of a
constraint graph. There are three task capabilities shown,
each corresponding to a variable, representing the need
for a sonar, a magnetometer, and a CTD sensor. Two
AUVs are under consideration for these capabilities,
as shown in the domains of the variables. The bold
circles are constraint nodes. Each of these corresponds
to one of the AUVs. They represent the constraint on
the total resources (e.g., energy) that can be expended
by the AUVs. For example, C-AUV1 ensures that if the
resources needed for the sonar and the CTD capabilities
exceeds the total resources available to the AUV, then
AUV1 will not be selected for both roles.

We also assume that there may be multiple ways
to achieve any particular task. For example, to take a
temperature profile of an area, AUVs with CTD can be
used, as can those with simple temperature sensors. This
means that there are multiple ways to build the constraint
graph representing the problem, depending on which task
alternatives are selected. This is a problem for standard
CSP approaches.

Our task assignment mechanism [Turner & Turner,
1999] begins with a type of constraint-based reasoning
called constrained heuristic search(CHS) [Fox et al.,
1989]. CHS combines heuristic search with CSP
techniques, deciding what to do at any point based on
heuristics based on the topology and other properties
(textures) of the constraint network. We extended CHS
in two ways: by adding then-ary constraints needed to
represent resource constraints of AUVs with multiple
capabilities, and by allowing CHS-inspired heuristics
and mechanisms to not only handle partial constraint
graphs, but also to help select alternatives to build the
constraint graph.

Our approach begins with atask-decomposition
tree (TDT), an AND–OR tree representing all possible
alternative ways of carrying out the mission (see
Figure 5). This could be given to the system by a human,
or it could be created using standard artificial intelligence
planning techniques. Branch points without arcs
represent choice points between alternatives. Branches
of the tree connected by arcs are ones that all need to be
done if the parent node is selected. The leaves of the tree
are capabilities that are required for tasks. Since each
of these leaves will ultimately become a variable in a
CSP, they are also marked with the estimated resources
needed for using that capability in the task5 and with the
set of vehicles that have that capability—the latter will

5This is a drastic simplification of how resources will
ultimately need to be represented. Making this more realistic
is the subject of future work.

be added by the MLO planning agent based on what is
found out during the MLO discovery phase.

The overall form of the task-assignment mechanism
is a heuristic search. Each state consists of a constraint
graph representing the portion of the mission already
considered and a task-decomposition tree for the
rest. The start state has the initial TDT and an empty
constraint graph. A goal state has an empty TDT and
a constraint graph representing all the tasks necessary
to accomplish the mission with each constraint variable
having a one-element domain (i.e., each variable has a
value). The available operators to move from state to
state are to choose an OR branch in the current state’s
TDT, choose the AND branch to add next, or to set a
variable to a value.

Selecting which operator to apply is guided by
heuristics based on the structure of the constraint graph
that is predicted to exist in the successor state, should
the operator be applied. We base the heuristics on the
textures of CHS. For example, thevalue goodnesstexture
is used when selecting an OR node’s branch to pick the
alternative that can be satisfied by the most values. This
gives the algorithm flexibility, since it keeps number of
the ways to satisfy the constraints as large as possible.
The constraint reliancetexture is used at an AND node
to pick the subtask with the fewest alternatives, i.e., that
is most constrained. This helps insure that important,
limiting constraints are present in the graph early, so that
the algorithm can insure that they can be satisfied before
doing too much additional work.

The textures in CHS were meant to guide the
selection of variables in an existing constraint graph to
set and which values to set them to. However, in our
approach, we are interested in building the constraint
graph. Consequently, we estimate the values the heuristic
needs at the interior nodes of the graph by propagating
values from the leaves upward, thus marking the tree.
For example, for thevalue goodnesstexture, at the
leaves, the size of the domain of the variable is used.
This is propagated to higher nodes in the tree by taking
the minimum of child nodes’ values at AND nodes
and taking the maximum at OR nodes. When selecting
an alternative at an OR node, the one highest value
computed in this way is selected. Forconstraint reliance,
the domain size is again used, and the minimum is again
used at AND nodes, but the sum is used at OR nodes.
When selecting a subtask to work on at an AND node,
the subtask with the lowest value computed this way is
selected.

Selections from the TDT are made until a bottom-
level subtask’s capabilities’ variables are added to the
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Figure 5: A task-decomposition tree (TDT) for an AOSN mission. [From Turner & Turner, 1999.]

constraint graph. At that point, the usual CHS algorithm
is run. The result is either an inconsistent constraint
graph, in which case the algorithm backtracks, or one
that is consistent (and possibly solved). The overall
algorithm terminates when all variables have been added
to the constraint graph and it is solved.

THE CODA/CADCON SIMULATOR

Early in the project, we realized that we needed a
simulator to allow us to develop and test the work. The
CoDA simulator, which has been described elsewhere
[Turner & Turner, 2000; Albertet al., 2003], is a
multi-fidelity simulator capable of simulating AOSNs
or other multi-AUV systems at a variety of levels, from
a high-level simulation of the aggregate properties of
the system to a low-level, high-fidelity simulation of
agents carrying out their tasks. This is useful, as it
allows us to quickly simulate the effects of a group
of agents following protocols without worrying about
how the agents would actually make the decisions
necessary to follow them. This allows us to see if
we are on the right track. Later, we can add the
decision-making mechanisms to the simulated agents
that actual agents would use to help insure that the
system would work in the real world. In addition,
the simulator was instrumented so that we could run
simulation experiments and gather useful statistics.

The first CoDA simulator used a variety of
technologies. The expert system language CLIPS
[Giarratano, 1993] was used to simulate the protocols as a

set of rules. This worked in conjunction with versions of
the task-assignment and organization-design algorithms
written in Lisp. Communication between the two, due to
some shortcomings of CLIPS for our purposes, was via
Unix named pipes (FIFOs) and standard input/standard
output. For debugging, CLIPS could run interactively
and be in control of the Lisp code. This allowed the
CLIPS interface to be used for debugging the ruleset.
For experiment runs, a Lisp-based experiment harness
was in control. The simulator was instrumented using
the Lisp-based CLIP/CLASP [Andersonet al., 1995]
experiment and statistical package.

Recently, the CoDA simulator was interfaced to
the Autonomous Undersea System Institute’s (AUSI’s)
CADCON high-fidelity multi-AUV simulator [Albert
et al., 2003]. This gave CoDA the ability to run
simulations incorporating hydrodynamics of vehicles, as
well as providing a very nice interface and visualization
tool. It extended CADCON by providing control
algorithms for the simulated agents.

Currently, the simulator is being redesigned and
rewritten entirely in Lisp to avoid the hodgepodge of
languages and to avoid some of CLIPS’ shortcomings.
As CoDA is at the level of maturity needing it, we are
rewriting the simulator first to perform agent-level rather
than aggregate simulation. That is, simulated agents
will be present as software agents, not simply as facts
in a rule-based system’s knowledge base. This will
provide a higher level of fidelity of simulation than the
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current simulator. Initially, the expert system language
LISA [Young, 2004], a Lisp-based version of CLIPS,
along with custom Lisp code, will be used to simulate
the decision processes of each agent. Each agent will
have its own Lisa/Lisp process as its agent program.
Ultimately, other agent programs, for example, our Orca
mission controller, will be used to control the agents.
Later, we will add back the aggregate property simulation
abilities to make the new version of the CoDA simulator
multi-fidelity as well.

CONCLUSION AND FUTURE WORK

At the time of writing, CoDA protocols, organization
techniques, task-assignment mechanisms, and the
simulator are at a state of maturity to allow simulation of
aggregate properties of an AOSN following the CoDA
protocols. Simulation experiments have been run [Turner
& Turner, 2001] showing that a CoDA-controlled AOSN
can self-organize and reorganize appropriately when the
situation changes. The two-level organization approach
is novel and effective in balancing the need for flexibility
and efficiency in the types of AOSNs in which we are
interested. The task-assignment mechanism is able to
rapidly assign agents to tasks, choosing from among
alternative ways of accomplishing tasks while taking into
consideration constraints and properties of the resulting
system. In sum, we believe the approach to multi-AUV
control taken in the CoDA project is a very good one
for heterogeneous, autonomous multi-AUV systems
engaged in long-duration, complex missions.

Although much has been accomplished so far in
the CoDA project, it remains very much a work in
progress. Future work will focus on all parts of the
project, including the protocols, organization design, task
assignment, and the simulator.

With respect to the protocols, additional attention is
needed in the short term to protocols for the mission
work phase and for detecting errors in AOSN operation,
as noted above. Also, as we simulate AOSNs at a higher
level of fidelity, we will doubtless uncover flaws and
shortcomings in the current protocol suite. As we expand
the kinds of missions and agents considered, we will also
discover the need for variants of protocols for different
mission types and classes of agents.

Our laboratory is also deeply involved in research
on modeling and using contextual knowledge to guide
problem solving [e.g., Turner, 1998], and we foresee a
role for context-sensitive reasoning in CoDA’s protocols,
as well. Agents of sufficient intelligence should be
able to reason about the context in which they find
themselves—the mission type, their own capabilities and

status, who they are working with, and the environment
they are in. If so, then when they recognize the context,
one piece of information that should be associated with
the contextual knowledge is which protocol to use in the
current context. This can help the agent know when to
switch protocols to switch phases of operation (e.g., from
MLO formation to discovery) as well as to choose the
appropriate variant of a protocol for the current situation.

Much work is also needed on the organization design
mechanism, as noted above. Some work has already been
done to identify features of the AUV and AOSN domains
that would predispose to one type of organization over
another, and work has also begun on identifying those
types of human organizations appropriate for AOSNs.
Additional work is needed on these areas. In addition,
the outline for a context-based organization selection
mechanism discussed above needs to be fleshed out
and implemented, and mechanisms for creating an
organization need to be developed. This includes ways to
merge organizations, when contextual schemas suggest
more than one.

With respect to task assignment, future work will
focus on distributing the process among several MLO
agents. Some work has been done on this already, based
on work on distributed constraint satisfaction. As our
approach is based in part on CHS, we will also consider
the distributed version of this algorithm as well, DCHS
[Sycaraet al., 1991].

Work will also be done to merge the task assignment
process with the organization design mechanism. So
far, we have considered these as two separate processes
in order to simplify the problem. However, the two are
obviously interdependent: which organization is selected
determines in part which decomposition of the TDT is
desirable, as well as which roles are present that require
agents to be assigned (e.g., management roles); task
assignment also affects organization selection, since the
assignment of AUVs to tasks may mandate particular
management tasks be present. We will in the near future
look at the interactions between these two processes, and
how the two should be interleaved.

The CoDA simulator will also be the subject of
future work. The agent-based simulator currently
being implemented will be augmented by adding back
the aggregate property simulation facilities of the old
simulator, thus making it, too, a multi-fidelity simulator.

We will also begin to explore how to integrate CoDA
into AUV control programs, both our own (Orca) and
other laboratories’. This may include using versions
of their programs in our simulator, or allowing other
laboratories’ programs to communicate over the Internet
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to control simulated agents in the CoDA/CADCON
simulator. We will examine among other things the
question of whether it makes sense to have others’
mission controllers incorporate CoDA protocols into
the set of things they know how to do, to implement a
standalone “CoDA module” that cooperates with the
controllers, or both, depending on the situation.

Finally, further simulation experiments will be
performed to gauge the usefulness of the CoDA
protocols, organization selection/design techniques,
and task-assignment mechanism. The results of these
experiments will allow us to fine-tune CoDA and move
toward in-water tests aboard actual AUVs engaged in
multi-AUV missions.
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