
Context-Sensitive Weights for a Neural Network

Robert P. Arritt
Roy M. Turner?

Department of Computer Science
University of Maine

Orono, ME 04468–5752 USA
arritt@maine.edu, rmt@umcs.maine.edu

Abstract. This paper presents a technique for making neural networks
context-sensitive by using a symbolic context-management system to
manage their weights. Instead of having a very large network that it-
self must take context into account, our approach uses one or more small
networks whose weights are associated with symbolic representations of
contexts an agent may encounter. When the context-management sys-
tem determines what the current context is, it sets the networks’ weights
appropriately for the context. This paper describes the approach and
presents the results of experiments that show that our approach greatly
reduces the training time of the networks as well as enhancing their per-
formance.

1 Introduction

Neural networks are well known for their ability to separate continuous numerical
data into a finite number of discrete classes. This functionality makes them
a perfect candidate for converting real-valued data into symbolic values for a
symbolic system. We will call such symbolic values “linguistic values”, borrowing
the term from fuzzy logic (e.g., [14]).

A problem arises though, in real-world situations where linguistic values are
highly context-dependent. For example, an underwater agent may convert a
depth of 5 meters into TOO DEEP while in a harbor, but later, when it finds
itself in the open ocean, 5 meters may be classified as NOMINAL. Thus, if
we wanted a neural network to convert an agent’s depth to a linguistic value
we would need to encode context into the network, which would entail adding
nodes and connections to the network. It is easy to see that as the number
of contextual features and the number of possible contexts increases this would
become unmanageable: in order to be context-sensitive, the network’s size would
make it impractical.

? This work was supported in part by the United States Office of Naval Research
through grants N0001-14-96-1-5009 and N0001-14-98-1-0648. The content does not
necessarily reflect the position or the policy of the U.S. government, and no official
endorsement should be inferred.

Roy Turner
Text Box
This paper appeared in the Proceedings of the 2003 International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT'03). Copyright 2003 the authors, all rights reserved.

On the other hand, if a neural network could be constructed and trained
for use within a single context, it could be much smaller, and it would be fast
to train and highly accurate. A large number of these simpler networks could
then do the work of the larger, more complex network. The problem would then
become one of somehow identifying which network to use in which context.

We have developed an approach to making neural networks context-sensitive
that takes this second approach. We solve the problem of deciding which net-
work to use by making use of prior work on a context-management system that
explicitly represents context an agent might reasonably be expected to encounter
[13, 12]. With each contextual representation, or contextual schema, is stored in-
formation useful for the agent in the context. For an agent that uses (or that
is) a neural network, contextual schemas contain the weights appropriate for the
network to use in the context represented by the schema. Rather than encoding
all the features of the context into the neural network’s weights, the context-
management system handles the problem of diagnosing the current context. This
frees the network to encode only those features having to do with categorizing a
value within that context. This greatly decreases both the complexity and train-
ing time of the neural networks. In addition, the classification error rate is on par
with the fuzzy rule-based system currently used by our system for classification.

There has been some prior work aimed at developing context-sensitive neural
networks. For example, Henninger et al. [7] have developed context-sensitive
neural networks that use context to determine which network is to be used.
Their work, however, makes use of a very simple form of context, i.e., an agent’s
distance from a location. In contrast, our approach relies on a much richer notion
of context that incorporates numerous environmental factors. This approach not
only allows us to better tailor the networks to the situations in which they will be
used, but also to remove most of the contextual information from the networks
themselves, thus reducing their complexity.

In the remainder of this paper, we discuss this approach in detail. Section 2
discusses our domain, autonomous underwater vehicle (AUV) control, and the
agent, Orca, within which our network resides and that provides the context
management functionality. Section 3 presents two neural network designs, one
using the context-management system and one that does not, that perform one
classification task important for AUVs, depth categorization. Section 4 presents
the experiments we used to compare these two approaches, including the results
of the experiments. Section 5 describes how the neural network is integrated into
the context-management system, and Section 6 concludes and discusses future
work.

2 AUVs, Orca, and Depth Management

Autonomous underwater vehicles are untethered submersible robots that are
capable of carrying out untended underwater missions. They are useful for a
variety of tasks in oceanography, ocean engineering, aquaculture, industry, and
defense [2]. One of the major advantages of AUVs is their ability to operate

in an area without a human surface presence, which allows them to perform
long-term missions without constant human supervision. AUVs can also operate
under hazardous conditions, such as within minefields, under ice, and during
inclement weather. They can also be combined into multi-AUV systems that
can perform tasks such as autonomous oceanographic sampling and surveying
[4]. Figure 1 shows the two EAVE (Experimental Autonomous VEhicles) AUVs
that were used for developing AUV technology.

Fig. 1. Two EAVE vehicles on a support barge. Used by permission of the Autonomous
Undersea Systems Institute (AUSI), Lee, NH.

The current state-of-the-art of AUV hardware technology is such that com-
petent AUVs can be built and fielded. However, although there has been much
recent work on intelligent control of AUVs (e.g., [9, 3]), the competent control
software needed to carry out, successfully, a complex, autonomous, possibly long-
term mission is largely lacking. For this, an AUV must have sophisticated artifi-
cial intelligence (AI) control software that can not only autonomously plan and
perform the missions, but that can also respond appropriately to the unexpected
events that are sure to arise within the highly dynamic undersea environment.

The Orca project [10] has the goal of creating an intelligent mission con-
troller for long-term, possibly multiagent, ocean science missions. Orca, which is
currently in development at the University of Maine, is a context-sensitive agent
that will be able to recognize the context it is in and behave appropriately.

Orca’s context-sensitivity is conferred by its context-management module,
ECHO (Embedded Context Handling Object) [12]. Orca represents all contex-
tual knowledge as contextual schemas (c-schemas) [13]. Each c-schema explicitly
represents a context, that is, a recognizable class of problem-solving situations.1

1 See [13] for a more complete description of our definition of context.

A c-schema contains a wide variety of contextual knowledge useful for the agent
as it operates within the context represented. For example, c-schemas contain
knowledge about: the expected features of the context; context-specific semantic
information (e.g., the meaning of fuzzy linguistic terms [11]); how to cope with
unanticipated events (how to recognize them, diagnose them, evaluate their im-
portance, and handle them); goal priorities in the current context; which actions
are appropriate for which goals in the context; and the appropriate settings of
behavioral and perceptual parameters for the context.

C-schemas are stored in an associative long-term memory [8] that, when pre-
sented with features of the current situation, returns the c-schemas that most
closely match it. A process of diagnosis then occurs to determine which of these
evoked c-schemas actually are germane [1]. These are then merged to form the
context object, which is a coherent picture of the current context. The knowl-
edge in this object can be used by the agent to quickly decide how to behave
appropriately for the context.

As an example of the usefulness of this approach, consider how an agent might
determine the appropriate response to a catastrophic event such as a leak. For
such a thing, there will be very little time in which to decide on a response,
so complex reasoning after the leak may be impossible. Yet the appropriate
response is context-specific. In a harbor, the AUV should probably land on the
bottom and release a buoy, since that will avoid collisions with surface traffic.
In the open ocean, however, landing might be disastrous: the bottom may be
below the crush depth of the vehicle. Instead, since there would be very little
likelihood of a collision, the appropriate response would be to surface and radio
for help. If the agent always maintains an idea of what its current context is,
then it can automatically take the appropriate response.

For the purposes of this paper, we are concerned with context-sensitive per-
ception, that is, appropriate classification of sensory inputs. As an example,
consider the AUV’s depth envelope, that is, the range of depths that are al-
lowable. This is highly context-sensitive. If the agent finds itself in a harbor, it
should tighten its envelope to keep it away from the surface, where it is in danger
of being hit by traffic, and above the bottom, where it may encounter debris that
could ensnare it. If, on the other hand, the agent finds itself in the open ocean,
it can loosen its envelope; the probability of surface traffic is minimal, so the
agent only has to worry about staying above its crush depth.

3 Neural Networks for Depth Classification

Elsewhere, we have proposed a solution to the problem of context-sensitive clas-
sification of sensory data that was based on a fuzzy rule-based system [11].
However, we are interested in a mechanism that can learn from the agent’s own
experience or by being presented with training examples, since the AUV’s oper-
ating conditions may change, and it may be difficult or impossible to obtain the
fuzzy rules from human experts. Consequently, we have begun investigating the
feasibility of using neural networks for this task.

If the neural network is going to classify (e.g.) depth, context must be taken
into account. This can be done in two ways: either a large network with a large
number of inputs can be trained with data from instances of all the contexts the
AUV may encounter, or numerous smaller networks can each be trained with
data from instances of a single context. The former kind of network must not
only classify the agent’s current depth, but also implicitly determine its current
context in the process. To achieve this, the network will have to be provided
not only with the current depth, but also with a large amount of environmental
data that will help it determine the current context. The idea behind the smaller
networks is that they will each specialize in classifying depth within a specific
context. It will be up to the context-management system to determine which
network is the appropriate one for the current situation. Since these networks
are so specialized, they will require a few inputs, chiefly the agent’s current
depth.

The larger network will be very large indeed, and although it may be ade-
quate for all contexts, it is unlikely it will be especially good for any particular
one. Training time will be long for the network. The smaller networks will each
be simpler to train, and they will obviously be highly-tailored to depth catego-
rization for the context in which they are used.

Our approach is conceptually the latter. However, instead of using numerous
small networks, we have a single network whose weights are set based on the
context. The weights for the network that are appropriate in a given context
are stored in the c-schema representing that context. When that context is rec-
ognized, the weights are retrieved from the c-schema and given to the neural
network. During the context, the network then behaves as a highly-specific net-
work. When the context changes, any changes to the weights, e.g., from learning
sessions within the context, are then stored in the c-schema for use the next time
the agent is in that context. A new c-schema is found for the new context, and
its weights are loaded. This approach is particularly useful in a system such as
Orca, in which the agent’s context is already being recognized and represented.

In the next section, we discuss experiments we performed to determine if a
large number of small networks, such as is effectively used in our approach, is as
good as or better than a large, multi-context network. In the following section,
we discuss how this can be integrated into Orca.

4 Experiments and Analysis

There are several criteria for determining if the smaller networks are better suited
for our task. First, the smaller networks would have to perform the classification
task at least as well as the larger network. Second, since we would be training
numerous smaller networks, they would have to train much faster than the larger
network. Finally, we would have to show that the size of the larger network
grew at an unacceptable rate as more contexts were added to the system. In
this section we will show that the set of small networks classify better than the

single large network. We will then show, in a less formal manner, that the smaller
networks train faster and that the larger network grows unmanageably large.

For the sake of the following experiments we made a few decisions regarding
our networks. All of our networks were two layer feed-forward networks [5] that
had 5 output nodes. Each of these output nodes stood for one of our linguistic
values: TOO SHALLOW, SHALLOW, NOMINAL, DEEP, TOO DEEP. The
output node with the highest value was the classification that we chose. Our
smaller networks each had five nodes in their hidden layer. The number of hidden
nodes was determined by starting with a network with two hidden nodes this
network was trained with two-thirds of the training data. Next, the performance
of this network was evaluated using the final third of the training data. A node
was added and the network was retrained and tested. This process was repeated
until an acceptable level of performance was reached. This process is a form
of cross-validation[6]. The number of nodes in the hidden layer of the larger
network varied with the number of contexts, but was also chosen via cross-
validation. Training was done with the Levenberg–Marquardt algorithm[5]. All
data was collected via Matlab programs running on an 1.5 GHz Intel Xeon PC
under the Linux operating system.

When we set out to test the classification performance of our networks we
decided to keep the number of contexts small in order to simplify the training
of the larger network. Thus, we chose to test the performance of the networks
at classifying depths within a harbor, on a shoal, and in the open ocean. In
order to implement the larger network we had to determine the most salient
features of the contexts and use them as parameters. We chose the following
seven parameters: depth, distance from shore, water column depth, density of
fish, density of debris on the bottom, and the density of surface traffic. The
training data for all of these parameters was then generated randomly via a
normal distribution around the accepted values for each parameter. Since we
wanted these networks to perform as well as our current fuzzy system, we used
it to generate the correct classifications for our training data.

Next, the large network was trained with the entire training set while the
smaller networks were trained with the data from there respective contexts. Upon
completion of training, the networks were tested with more randomly generated
data. The rate of classification error can be seen in table 1. Performing a t-test
with H0 : µlarge net = µsmall nets and H1 : µlarge net > µsmall nets we get a t
statistic of 2.218 and a critical value of 1.649 when α = 0.05. Thus, we reject
the null hypothesis and we can say that the smaller nets generate, on average,
fewer errors.

Harbor Shoal Ocean µ σ2

Large Network 0.0216 0.0197 0.0202 0.0205 0.000008

Small Networks 0.0378 0.0118 0.001 0.0169 0.00008

Table 1. Rate of Classification Errors

Another important aspect of the networks is how long they take to train.
Each of the smaller networks take about the same amount of time to train,
thus as we increase the number of smaller networks, the training time increases
linearly. Consequently, given the one-to-one correspondence between networks
and contexts in this approach, training time overall is linear in the number of
contexts. It is intuitive that the smaller networks should train faster, but we have
to verify that as the number of contexts is increased that the training time for
the larger network increases faster than the training time for the set of smaller
networks. Table 2 and figure 2 show how the training times for the networks
grow as the number of contexts increase from one context to six. It is apparent
that the training time for the larger network is increasing much faster than that
of the smaller networks. We attribute this to the fact that as the number of
contexts increases, the larger network grows both in size and in the number of
inputs. It also requires more training data to allow it to distinguish between
contexts.

of Contexts Large Network Small Networks

1 12 seconds 11.5 seconds

2 1 minute 9 seconds 24 seconds

3 2 minutes 30 seconds 37 seconds

4 6 minutes 23 seconds 49 seconds

5 10 minutes 16 seconds 62 seconds

6 18 minutes 37 seconds 77 seconds

Table 2. Training times as the number of contexts is increased

Our final test was to find out how fast the number of nodes in our larger
network increased as the number of contexts increased. We wanted to know this
because as this number increased, we would increase the runtime of the network
and the training time of the network. The number of nodes needed was calculated
through simple cross-validation[6], as discussed earlier. Table 3 shows the results
of this experiment. It appears that the network is growing in an exponential
fashion. It should be apparent that this will soon cause the larger network to
become both inefficient and impossible to manage.

This set of experiments demonstrates several things. First it shows us that
the smaller networks perform better at the classification task than the larger
network. Next, we saw that the training time of the set of smaller networks
increases linearly as the number of contexts increases and the training time of
the larger network appears to increase at a much faster rate. Finally, we saw
that the number of nodes in the larger network exploded as more contexts were
added. Taking this all into account, the logical choice is to use the set of smaller
networks for our classification tasks.

Fig. 2. Graph of training time as contexts are increased

of Contexts # of nodes in hidden layer

1 5

2 8

3 20

4 32

5 63

6 112

Table 3. Number of nodes needed to classify depth

5 Embedding the Network within a Schema

As previously discussed, Orca’s context-management system explicitly represents
contexts in the form of contextual schemas. A c-schema incorporates everything
that is deemed important about a given context. This should include information
about the operation of neural networks in the context represented. This can be
done in one of two ways.

As mentioned earlier in this paper, the only difference between all of the
smaller networks was the weights. This static architecture makes it very easy to
store the weights in a c-schema. The simplest, although slightly short-sighted,
way to make these networks context-sensitive would be to save the weights in
a simple list. This makes it very easy for the context manager to manipulate
the weights. When the weights are needed they can simply be read in order and
slotted into the appropriate spot in the neural network. Likewise, if the context
manager deems it necessary to retrain a network the new weights can be easily
changed.

The problem with this method is that if in the future we decide to change the
structure of the network we would have to rewrite all of our network handling
functions. To solve this problem, we could encode the structure of the network
into the list. By nesting lists we could generate any feed-forward network struc-
ture while maintaining a simple representation. Figure 3 shows how this could
work. The idea behind this scheme is that each layer is represented as a list
within the master list. Then the set of each node’s input weights are stored
within the layer list. We intend to use this method in our system, although we
will have to be alert for performance degradation from the greater complexity it
entails.

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

(((w1 w3)(w2 w4))
((w5 w7)(w6 w8))

((w9 w10)))

Fig. 3. Converting a network to a list

6 Conclusions

This paper presents a technique that allows a neural network to be context-
sensitive without becoming unmanageable. This is achieved by allowing the con-
textual aspect of the problem to be handled by a symbolic context-management
system. By using this technique we are able to to use the efficient classification
and learning algorithms associated with neural networks without the explosion
in network size that comes with the addition of more contextual data.

While we have only shown this technique to work for our classification task,
we believe that it could be applied to many other neural network applications
where the network’s task and/or domain can be partitioned naturally into con-
texts in which the network must operate.

This project has raised many questions that we hope to look at in future
work. First, we have to implement and test a method for retraining networks
during a mission. One possibility is for the context manager to recognize that it
is in a training context (by retrieving a corresponding c-schema) and to allow the
weights to change while in that context. Another avenue that we are currently
exploring, not only with respect to these networks but with our entire notion
of context, is how to merge disparate contextual information. For example, an

AUV may be in the context of a harbor and also a rescue mission. The harbor
context may tell the AUV that the bottom of the harbor is too deep while
the rescue context will want to eliminate the idea of a depth envelope entirely.
Finally, another thing that we have to look at is whether we have lost anything
by not using the larger network. This paper shows that it does not classify as
well, but we may be able to draw other information from it such as when to
merge contexts, or we may be able to use it as an indicator for when context is
changing.

References

1. Robert P. Arritt and Roy M. Turner. A system for context diagnosis. Technical
Report 2003–1, University of Maine Computer Science Department, 2003.

2. D. Richard Blidberg, Roy M. Turner, and Steven G. Chappell. Autonomous un-
derwater vehicles: Current activities and research opportunities. Robotics and Au-
tonomous Systems, 7:139–150, 1991.

3. Don Brutzman, Mike Burns, Mike Campbell, Duane Davis, Tony Healey, Mike
Holden, Brad Leonhardt, Dave Marco, Dave McClarin, Bob McGhee, and Russ
Whales. NPS Phoenix AUV software integration and in-water testing. In Proceed-
ings of the 1996 IEEE Symposium on Autonomous Underwater Vehicle Technology
(AUV’96), pages 99–, Monterey, CA, USA, June 1996.

4. T.B. Curtin, J.G. Bellingham, J. Catipovic, and D. Webb. Autonomous oceano-
graphic sampling networks. Oceanography, 6(3), 1993.

5. M. T. Hagan and M. Menha. Training feedforward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks, 5(6):989–993, 1994.

6. Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc.,
1999.

7. Amy E. Henninger, Avelino J. Gonzalez, Michael Georgiopoulos, and Ronald F.
DeMara. A connectionist–symbolic approach to modeling agent behavior: Neu-
ral networks grouped by context. In Proceedings of the Third International and
Interdisiplinary Conference on Modeling and Using Context, pages 198–209, 2001.

8. J.H. Lawton, R.M. Turner, and E.H. Turner. A unified long-term memory sys-
tem. In Proceedings of the 1998 IEEE International Conference on Case-Based
Reasoning, 1998.

9. Henrik Schmidt, James G. Bellingham, Mark Johnson, David Herold, David M.
Farmer, and Richard Pawlowicz. Real-time frontal mapping with AUVs in a coastal
environment. In Proceedings of the IEEE Oceanic Engineering Society Conference
(OCEANS’96 MTS), pages 1094–1098, 1996.

10. Roy M. Turner. Intelligent control of autonomous underwater vehicles: The Orca
project. In Proceedings of the 1995 IEEE International Conference on Systems,
Man, and Cybernetics, 1995.

11. Roy M. Turner. Determining the context-dependent meaning of fuzzy subsets. In
Proceedings of the First International and Interdisiplinary Conference on Modeling
and Using Context, 1997.

12. Roy M. Turner. Context-mediated behavior for intelligent agents. International
Journal of Human–Computer Studies, 48(3):307–330, March 1998.

13. Roy M. Turner. A model of explicit context representation and use for intelligent
agents. In Proceedings of the Second International and Interdisiplinary Conference
on Modeling and Using Context, 1999.

14. L. A. Zadeh. A theory of approximate reasoning. In J. Hayes, D. Michie, and L.I.
Mikulich, editors, Machine Intelligence 9, pages 149–194. Halstead Press, 1979.

