
Appears in Case-Based Reasoning Research and Development: Proceedings of the Third International
Conference on Case-Based Reasoning, 1999, pp. 188-202. � Springer-Verlag.

A Unified Long-Term Memory System*

James H. Lawton Roy M. Turner & Elise H. Turner

Air Force Research Laboratory Department of Computer Science
Rome Research Site University of Maine
Rome, NY 13441 Orono, ME 04469
lawton@ai.rl.af.mil {rmt,eht}@umcs.maine.edu

Abstract. Memory-based reasoning systems are a class of reasoners that derive
solutions to new problems based on past experiences. Such reasoners use a
long-term memory (LTM) to act as a knowledge base of these past experiences,
which may be represented by such things as specific events (i.e. cases), plans,
scripts, etc. This paper describes a Unified Long-Term Memory (ULTM)
system, which is a dynamic, conceptual memory that was designed to be a
general LTM capable of simultaneously supporting multiple intentional
reasoning systems. Through a unique mixture of content-independent and
domain-specific mechanisms, the ULTM is able to flexibly provide reasoners
accurate and timely storage and recall of episodic memory structures. In
addition, the ULTM provides support for recognizing opportunities to satisfy
suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage
of unexpected events.

1.0 Introduction

Memory-based reasoning systems are a class of reasoners that derive solutions to new
problems based on past experiences. Included in this class are case-based [7,2] and
schema-based [15] reasoners. The purpose of a long-term memory (LTM) in a
memory-based reasoning system is to act as a knowledge base of the past experiences,
which may be represented by such things as specific events (i.e. cases), plans, scripts,
etc. The key functions of an LTM are the storage and retrieval of such
representational structures. The proper performance of both of these functions is based
directly on how the structures are organized in the LTM’s knowledge base, and to
what extent the LTM can match new experiences to existing structures.

The Unified Long-Term Memory (ULTM) system is a dynamic, conceptual
memory [9,5,7] that was designed to be a general LTM capable of simultaneously
supporting multiple intentional reasoning systems. Through a unique mixture of
content-independent and domain-specific mechanisms, the ULTM is able to flexibly
provide reasoners accurate and timely storage and recall of episodic memory
structures. In addition, the ULTM provides support for recognizing opportunities to

* This material is based upon work supported by the National Science Foundateion under Grant No.

BES—9696004.

satisfy suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage of
unexpected events.

As shown in Fig. 1 both reasoning systems and the people who develop them (i.e.
"users") access the ULTM’s knowledge base through its interface functions. The
knowledge base is divided into two parts: the domain-specific knowledge, which the
ULTM uses to control its behavior and interaction with the reasoning system(s) using
it, and the memory items themselves. The memory items stored in the ULTM’s
knowledge base represent the various reasoners’ experiences. As with many such
memory systems, the basic structure for storing and organizing items in the memory is
a Memory Organization Packet (MOP) [9]. Unlike most conceptual memories, the
MOPs in the ULTM are generic in nature, meant to be the building blocks that
reasoning systems will use to create their own structures to be stored in and retrieved
from memory. These are the structures the reasoners actually work with, and,
although they will be called different names in the various reasoning systems, we
generically refer to these representations as either a case, if it represents a specific
experience, or a MOP, if it represents a generalization of several cases or other MOPs.
These MOPs and cases are organized into a hierarchy, with more general MOPs
pointing to (loosely speaking), or indexing, more specialized MOPs or cases.

The ULTM has been tested with two particular memory-based reasoners: Orca1

[16,17] and CoCo (a generalization of JUDIS [13]). Orca is a schema-based reasoning
(SBR) system currently being developed as an intelligent control system for
autonomous underwater vehicles (AUVs). SBR systems represent most or all
problem-solving knowledge explicitly as MOP-like declarative knowledge structures
called schemas, which are used to guide all facets of behavior. CoCo is a
conversational controller that is to be part of a natural language interface to a system
of multiple AUVs. CoCo uses knowledge about intentions and conventions in
discourse, represented as Conversation MOPs (or C-MOPs) [4], to organize the
conversation goals of a distributed system.

1 In fact, much of the core functionality of the ULTM is based on Orca’s schema memory.

ULTM

Reasoner Access Func t ions

Reasoner

Support Routines

Knowledge Base

User Acce ss Func tions

User

D o m ain-
Sp ecif ic

K n o w led ge

Reasoner Reasoner

User

Fig. 1 – ULTM Overview

This paper describes the unique capabilities of the ULTM. These include the
ability to support multiple reasoning systems simultaneously, the various mechanisms
for providing domain-specific knowledge to the ULTM that is used to “fine-tune” the
retrieval and storage processes for each reasoner, and the support for recognizing
potential opportunities to satisfy suspended goals. It is assumed that the reader is
familiar with conceptual memory and memory-based reasoning. Background
information on these topics can be found in [9,5,7].

2.0 Memory Structures

A key contribution of the ULTM is that it is capable of supporting multiple memory-
based reasoning systems simultaneously. The foundation for this capability lies in the
core memory structures used: the MOPs. The ULTM's MOPs are an extension of
traditional MOPs. They are generic in nature, providing basic support for knowledge
representation, along with extensive support for memory functions. It is expected that
the reasoning systems using the ULTM will base their memory structures (i.e. their
plans, scripts, etc.) on the ULTM structure MOP2, inheriting these core capabilities.

As with other conceptual memories, the memory items in the ULTM's knowledge-
base are organized as a network in which each node is either a MOP or a specific
experience (i.e. a case). Each MOP contains generalized information characterizing
the episodes it indexes, called its norms or content frame, and a set of indices for
those episodes based on their differences. Indices point from an indexing MOP to
either an individual case or another, more specialized MOP (the indexed MOP), thus
forming a MOP/sub-MOP hierarchy [5].

In addition to the actual memory items, the ULTM’s knowledge base contains the
domain-specific knowledge needed for correct memory operation. Much of this
knowledge is in the form of reasoner-specific heuristic functions, which are used to
tailor the ULTM's retrieval and storage mechanisms to fit the particular domain. This
knowledge is associated with the corresponding memory items through slots in the

2 The knowledge representation system used by the ULTM is the frame system FrameWork [14], which is

itself implemented using the Common Lisp Object System (CLOS) [11].

Slot Description
predictive A list of those features expected (by the user) to uniquely

identify items in memory.
elaboration-heuristics MOP-specific heuristic functions for index elaboration.
preference-heuristics MOP-specific preference heuristics for MOP selection.
index-generation- MOP-specific heuristic functions for generating indices.
heuristics
suspended-goals Place to attach goals in the hope they will be recalled

opportunistically.
bookkeeping A placeholder for bookkeeping information, such as

recency and frequency statistics, generalization
information, and predictive feature tracking.

exemplars Place to store cases and MOPs that, while they fit the
current MOP, could not be immediately indexed.

Fig. 2 - MOP Slots

MOP structure, which are listed in Fig. 2. The meaning of each of these slots is
explained throughout the remainder of this paper.

An index (see Fig. 3) in a conceptual memory is a two-tiered structure of features
and values, which are taken from an indexing vocabulary [7]. An indexing
vocabulary is a set of feature names and associated values that are used to construct
the indices in the MOPs. The ULTM’s indexing vocabulary (shown in the example in
Section 4.3) requires the feature names to be slots in the MOPs being used by the
reasoning system. The implementer of the reasoning system (i.e. the “user”) must
specify which slots of the system’s frames should be considered predictive features,
those that will be used to search and generate indices, by listing those slots in each
MOP’s predictive slot. The ULTM’s indexing vocabulary also requires that the
index values be described as properly formatted predicated functions, as used in
[16,17].3

3.0 Memory Retrieval

Memory retrieval occurs when a reasoning system requests the LTM to recall any
memory items matching a given probe, which is a description of a situation made up
of features and associated values. The LTM searches its collection of stored
experiences, recalling those that most closely resemble the probe.

The ULTM uses the standard retrieval process for MOP-based conceptual
memories: directed search [5,7]. Memory retrieval is initiated by a reasoning system
by calling the retrieve function. This function performs a search starting from the
appropriate starting points, or contexts, looking for items in memory that most closely
match the given probe, guided by the predictive features.

Determining which (if any) of the MOPs or cases indexed from a given MOP
match a probe proceeds as follows: for each feature listed in predictive, one or
more values are found either in the probe, working memory (if appropriate), or

3 Using a more principled approach to indexing vocabularies, such as the Universal Index Frame (UIF) for

intentional systems [10], is being considered for future work. But, since the UIF is too general to be used
directly, customizing it was beyond the scope of this project.

MOP-1

feature-1 feature-2

MOP-2

value-1 value-2 value-3

MOP-3 MOP-4

Fig. 3 – Index Structure

through index transformation. These values are then matched against the MOP’s
indices, by determining if they can make the index value’s predicate functions true. If
there is a match, the MOP or case pointed to by the matching index is added to a set to
be searched further or (possibly) returned.

3.1 Index Transformation

When a value for a feature cannot be found in the given probe or in working memory,
or when the value does not match any of the known index values, it may be necessary
to infer a value for that feature. Sycara and Navinchandra [12] identify three general
methods to perform this process of index transformation: elaboration, mutation and
abstraction.

Both index elaboration and mutation use heuristics to infer values for features
when none can be found in the given probe or in working memory. Elaboration
heuristics provide more detail, while mutation heuristics make key changes to known
values (e.g. changing sizes, substituting ingredients, etc.) [12]. In the ULTM, we
lump both of these transformation methods together and refer to them simply as
transformation heuristics.

Since index transformation relies heavily on domain-specific knowledge, it is
impossible for any LTM to infer values for every feature. Instead, the ULTM
provides a mechanism for the user to provide this domain-specific knowledge in the
form of heuristic functions associated with MOPs. While the ULTM does provide a
few generic index transformation functions, it is expected that the user will provide
the majority of these heuristics.

Because specifying transformation heuristics may be complicated, the ULTM
actually provides two mechanisms to add them: as rules of a rule-based system or as
regular functions. The rule-based system provides a simple, expressive mechanism
for adding elaboration knowledge that may be generally applicable, especially in
cross-domain applications. However, there may be times when expressing the desired
heuristic information is too difficult using the somewhat restrictive rule syntax, or
when the heuristic knowledge may only be applicable to a given set of MOPs or cases
(those used by a particular reasoner). In these situations the user would use the more
general heuristic function mechanism.

Adding a new transformation rule requires first defining the new rule and then
adding the rule to the ULTM’s index rule-based system (index-RBS). For example, in
the SMART simulator [17] where Orca is tested, it is possible to get values for the
depth and altitude of an AUV directly from working memory. Suppose, however, one
needed to determine how deep the water is at the AUV’s current location, which we
will call the bottom-depth. This value, the sum of the AUV’s depth and altitude, is
not directly available, and thus must be computed. The rule that computes this is4:

Rule index-bottom-depth-rule
If feature is bottom-depth
 and ?d = current depth from WM
 and ?a = current altitude from WM

4 For the sake of readability, this rule is not given in the actual index-RBS rule syntax.

Then
 Conclude bottom-depth = (?d + ?a)

Similarly, this heuristic could be described in a function, (e.g. index-bottom-
depth-fcn). Once this function is defined, the ULTM would be told when to apply it
by associating the function (through the elaboration-heuristics slot) with the
MOP (or MOPs) for which elaborating the bottom-depth feature may be needed.
What is important is that in either case (rule or function), if the ULTM cannot find a
value for a given predictive feature in the probe or working memory, it will employ
any relevant elaboration heuristics to infer a value. In this way a user can tailor and
augment the ULTM's general directed search mechanism to insure correct behavior.

Index abstraction is another, somewhat more general, form of index
transformation. Instead of using heuristic rules or functions, index abstraction
exploits the structure of knowledge represented in a hierarchical frame system. If a
direct match for a feature value cannot be found, abstraction attempts to find a match
on a similar value (where similar refers to how closely connected the two values are
in the knowledge hierarchy) by traversing up generalization and down specialization
links.

The ULTM does not do retrieval-time index abstraction, however. Rather, when
indices are created, their values are abstracted as much as possible (with respect to the
indexing MOP). This method is more efficient, since abstraction need only be done
once, and it uses the execution context in effect at storage time, which more
accurately describes the situation under which the MOP or case is being stored. This
storage-time index abstraction is discussed in more detail in Section 4.1.

3.2 Preference Heuristics

The search of memory described above will produce a set of MOPs and/or cases
(which we will collectively refer to as MOPs) that have matched the various features
in the given probe. However, the retrieval should only return a limited number of
MOPs: those that match “best.” The problem of choosing the best matching MOPs,
known as the selection problem [6], is handled by the ULTM through the use of
preference heuristics [6]. These heuristics are functions that rank the set of MOPs
according to various criteria.

The ULTM provides several of the more common heuristic functions, which are
based on those used in PARADYME [6]. These functions rank the retrieved cases
based upon the following criteria: how well they (i.e. the retrieved cases) relate to the
reasoner's current goals, how salient and specific the features of the retrieved cases are
with respect to the given probe, and how frequently and recently the retrieved cases
were previously recalled. Each of the common heuristic functions provided by the
ULTM is given a particular case and a list of other cases to rank it against. It returns
a numeric score -- either a bonus (value > 0), penalty (value < 0), or neutral (0) value -
- which is added to the cases’ composite score. The cases are ranked by highest
composite score after applying all of the relevant preference heuristics.

While the set of preference heuristic functions provided in the ULTM should be
generally applicable to many intentional reasoning systems, it is likely that the
reasoners using the ULTM will also need to apply some domain-specific knowledge

to the ranking of retrieved cases. To support this, a mechanism is provided to allow
the user to specify their own MOP-specific heuristics, by associating new preference
heuristic functions with relevant MOPs through their preference-heuristics slot.
The ULTM automatically applies these additional functions whenever it retrieves
MOPs or cases that have such functions associated with them, adding their returned
values to the composite score.

3.3 Predictive Feature Tracking

The ULTM provides limited support for predictive feature tracking, which refers to
the recording of how often each predictive feature leads to a reminding. This is done
by keeping a record of feature references, which are how often each of a MOP’s
predictive features is used, as well as MOP references, which are how often a MOP
has been searched. This information is automatically associated with the MOPs
(through their bookkeeping slot), and is retrieved with a set of accessor functions.

One should note that this form of feature tracking is very limited. It does not keep
track of which features actually contributed to determining which MOPs were
actually returned by a memory search. Rather, it merely tracks which features led to
possible choices, at the individual MOP level. To truly track the predictiveness of a
given feature, the ULTM’s mechanism would need to be extended with more
sophisticated machine learning techniques.

Also, the ULTM does not currently do anything with this tracking information.
Rather, it is provided for use by reasoning systems in such things as preference
heuristics and perhaps feature “forgetting.” For example, one could create a
preference heuristic that gives a bonus to MOPs or cases that were arrived at through
features with a high feature-reference to mop-reference ratio. Similarly, one could
remove (forget) features from a MOP’s predictive list if that ratio drops below a
certain threshold.

4.0 Memory Storage

As new events are experienced, the reasoning process may want to store them in
memory so that they may be later retrieved. The same search process is used to find a
place to store a new MOP or case in memory as would be used to retrieve it. That is,
using the case as a probe, its features are used to first select an initial context, and
then to traverse indices matching those features. At each MOP encountered during the
search, there are four possibilities that may occur for each of the MOP’s predictive
features that the probe has a value for (modified from [5]):

1) Nothing else is indexed in the MOP by that feature.
2) One or more other MOPs are indexed in the MOP by that feature,
but with values that differ from the probe’s.
3) One or more other MOPs are indexed by that feature/value pair.
4) The feature/value pair is one of the MOP’s norms.

For the first of these possibilities, we know that the probe (the MOP or case being
stored) contains a value for a predictive feature that is not currently being used in an
index. As such, we could just generate an index using that feature/value pair. But in
the ULTM, to be consistent with the retrieval process, as well as to keep the number
of indices from growing out of control, we do not. Instead, we collect all of these
"leaf" MOPs found during the search of the knowledge base and, after the search has
completed, pass them through the preference heuristics. For each MOP selected by the
preference heuristics, a set of indices is generated by determining the differences
between it and the probe. MOP differences are determined by comparing the values
for each predictive feature in the indexing MOP against values for those features in
the probe (the indexed MOP). Values that differ are used to generate indices. The
index generation process is discussed in Section 4.1. It may also be necessary to
update the norms of any MOP we add indices to, which is done through the process of
MOP generalization, described in Section 4.2.

For the second possibility, we could treat the MOP currently being searched
similarly to how it is treated in the first possibility: as a leaf node. But, since it is
actually an internal node, we know that it would be unlikely to be selected by the
preference heuristics (because of the specificity preference). Thus, in the ULTM we
have decided to directly index the probe under the current MOP when this situation
occurs. We know the probe has a value for a predictive feature that is not currently
being used in an index, so we can simply generate an index using this feature/value
pair (using the index generation process described in Section 4.1). As before, it may
be necessary to update the indexing MOP’s norm (Section 4.2). It should be noted
that for this possibility indices are generated during the search process.

In the third possibility, there are two situations we need to contend with. First, if
the probe is more specialized than the sub-MOP that was found indexed under the
current MOP, then the search simply continues from the indexed sub-MOP.
Otherwise, the probe is indexed under the current MOP, using the same difference
method described for possibility 1 above. Unlike possibility 1, however, these indices
are generated during the search.

Finally, for the fourth possibility, no indices are generated for the given
feature/value pair. So that it won’t be lost, however, if the probe cannot be indexed
by any predictive feature, it is added to the MOP’s exemplars list. The MOPs in
this list, along with any indexed MOPs, are used to update a MOP’s norms through
the generalization process (Section 4.2).

4.1 Index Generation

Once a location for the MOP or case being stored is found, one or more indices must
be generated for it. The ULTM uses the same mechanism for generating new indices,
regardless of which possibility from Section 4.0 applies. The index generation
process, shown in
Fig. 4, is given a feature and a value, which we will call the probe filler, that was
found for that feature either in the probe, in working memory, or through
transformation. The job of the index generation mechanism is to first abstract the
probe filler as much as possible (with respect to the corresponding filler in the

indexing MOP, called the MOP filler) and then convert it into a properly formatted
index value (predicate function). In keeping with its overall philosophy, the ULTM
provides a set of general mechanisms which can be augmented with domain-specific
knowledge to accomplish this task.

The probe filler is first minimally abstracted, which converts certain “raw” values
(e.g. numbers and instance objects) into more standard values used by the ULTM.
Next, any slot-specific abstraction heuristics are applied to the probe filler. These
functions allow the user to abstract any value in non-standard (i.e. domain-specific)
ways, thus extending the abstraction mechanism. By using such functions, indices
can be generated that match less specific probes. The ULTM first looks for slot-
specific abstraction heuristics associated with the probe, and then with the indexing
MOP.

For example, suppose we are indexing new-MOP under old-MOP, the feature we are
indexing on is depth, and we are given a probe filler of 50. Minimal abstraction
would convert 50 into the range: (range (low 50) (high 50)). Suppose further that
the depth slot of new-MOP has a slot-specific abstraction heuristic function associated
with it that abstracts a range representing a depth by subtracting 10 from the low
value and adding 10 to the high value, thus “widening” the range. The new value for
depth would thus be the range: (range (low 40) (high 60)).

After applying any slot-specific abstraction heuristics, the highest abstraction of the
probe filler (with respect to the corresponding MOP filler) is found. This primarily
applies to values for which an abstraction hierarchy can be used (e.g. frames). If the
probe filler is a descendent of the MOP filler, it is abstracted as far as possible up the
hierarchy such that it is still a descendent of the MOP filler. If the probe filler is not a
descendent of the MOP filler, but they do have a common ancestor, then the probe
filler is abstracted up to the common ancestor. The MOP filler will be updated later
during MOP generalization (Section 4.2). If the fillers are unrelated, no further
abstraction is performed.

After the probe filler has been abstracted as much as possible, it is used to generate
index values (i.e. properly formed predicate functions). While a default predicate
form is provided by the ULTM (a general pattern matching predicate), the ULTM
provides a mechanism to apply MOP-specific heuristic functions to the abstracted

minimally abstract
probe filler

apply slot-specific
abstraction heuristics

fully abstract filler

verify index-value
predicate functions

discard index-value
predicate function

check for number of
collisions > threshhold

add index

create new
generalized MOP

index colliding MOPs
under new MOP

fail

pass

no

yes

generate index-value
predicate functions

Fig. 4 - Index Generation Process

filler to produce index values. These heuristics are associated with MOPs through the
index-generation-functions slot.

It is possible to generate an index that is too abstract, especially using the default
mechanisms. To detect this, we verify the generated index functions by seeing if they
match the indexing MOP. If they do, the index function is discarded. If not, the
index function next must be tested to see if it causes a collision with any of the
indexing MOP’s existing indices. Two indices collide if their index values match and
they point to different sub-MOPs. An index is simply added to the indexing MOP if it
does not cause a collision.

If the index does cause a collision, but the number of colliding indices is below a
certain threshold value, the index is also just added to the indexing MOP as usual.
When, however, the number of colliding indices exceeds the threshold, a new MOP is
created as a generalization of the colliding MOPs. The newly created MOP is
indexed under the current indexing MOP, while the colliding MOPs are indexed
under the new MOP by their differences.

4.2 MOP generalization

Generalization [5,7] is the process by which the memory system updates the content
frames of MOPs. Initial generalization occurs when a new MOP is formed because
of a collision. In this situation, the generalization mechanism is given a new MOP
and several sub-MOPs. It must fill the content frame of the new MOP with the
features common to the sub-MOPs. That is, for each feature the sub-MOPs have in
common, it must find the central tendency of the fillers for that feature in all of the

goal

P-TAKE-SALINITY-SAMPLE
goal: a-take-salinity-sample
depth: 50

(isa ?feature a-take-sample) (isa ?feature a-take-sample)

P-SAMPLE
goal: a-sample
depth: number
resource-req: resources

resource-req: salinity-sensors

P-TAKE-TEMP-SAMPLE
goal: a-take-temp-sample
depth: 75
resource-req: temp-sensors

(indices from other MOPs)

Fig. 6 - Initial Memory Contents

sub-MOPs. The central tendency is a sort of “average” value of the fillers taken
together, and may be defined differently for each type of filler.

Generalization updates are made after the number of new sub-MOPs (those
indexed under a given MOP since the last generalization) exceeds a threshold value.
The same central tendency mechanism is used to update a MOP’s feature values as
was used when it was initially generalized.

To compute the central tendency of a collection of input values, the ULTM first
determines the dominant (i.e. most commonly occurring) type of the values. Based on
the dominant type, it then calls the appropriate specialized procedure. Currently,
specialized procedures are defined for symbols, sets, numbers (including ranges), lists
and frames. Users may create other specialized central tendency procedures to
support domain-specific filler types.

4.3 Storage Example

This section presents an example of the storage process in detail. To start, suppose
our memory contains, among other things, plans for different ocean sampling
missions (see Fig. 6)5. We wish to add P-TAKE-SOIL-SAMPLE, a plan that describes
how to perform a soil sampling mission. For the sake of this example, we will assume
that P-SAMPLE’s only predictive feature is GOAL, that our knowledge base contains the
abstraction hierarchy (fragments) of goals and resources as shown in Fig. 7, and that
the ULTM’s index collision threshold is set to 3.

We will assume the search arrives at P-SAMPLE. Since the probe (P-TAKE-SOIL-
SAMPLE) is not a specialization of the MOPs already indexed under P-SAMPLE (P-
TAKE-SALINITY-SAMPLE and P-TAKE-TEMP-SAMPLE), it is determined that possibility 1
from Section 4.0 applies. P-TAKE-SOIL-SAMPLE is thus indexed under P-SAMPLE using
the difference procedure from Section 4.0, which determines that the two plans do
differ on the predictive feature GOAL.

The probe has a filler of A-TAKE-SALINITY-SAMPLE for the feature GOAL. Minimal
abstraction does not change this value, and we will assume that there are no slot-
specific heuristics associated with the GOAL slots of either P-TAKE-SALINITY-SAMPLE
or P-SAMPLE. We next abstract A-TAKE-SALINITY-SAMPLE up the abstraction hierarchy
(Fig. 7) to A-TAKE-SAMPLE. The ULTM’s default index-generation heuristic is used to
generate the index value function (isa ?feature A-TAKE-SAMPLE). While this

5 We omit many of the details of the various MOPs, focusing on only those features and values that are

relevant to indexing in this specific example.

a-sample

a-take-sample

a-take-salinity-sample a-take-temp-samplea-take-soil-sample

sensors

salinity-sensor temp-sensorsoil-sensor

resources

(other resources)(other goals)

Fig. 7 - Abstraction Hierarchy

function will verify, it causes collisions with the existing indices for both P-TAKE-
SALINITY-SAMPLE and P-TAKE-TEMP-SAMPLE. Since the collision threshold (3) has
been met, we must use our collision handling procedure, which causes a new MOP
(which we’ll call P-TAKE-SAMPLE) to be generated and initially generalized. Initial
generalization fills P-TAKE-SAMPLE’s GOAL slot with A-TAKE-SAMPLE, its DEPTH slot
with (range (low 64) (high 86))6, and its RESOURCE-REQ slot with sensors. The
final structure of memory is shown in Fig. 8.

5.0 Support for Opportunism

When using reasoning systems that utilize a conceptual memory, goals that cannot be
immediately satisfied can be suspended and stored in memory, indexed by the
blocked goals along with the features that are blocking their progress, but which are
not currently available. This process is referred to as predictive encoding [8]. These
suspended goals can then presumably be found by the regular search mechanism the
memory system uses whenever a reasoning system requests a retrieval with an

6 Computed as the mean of 50, 75, and 100 ± (0.5 * standard deviation), which is 75 ± 11.

P-TAKE-SALINITY-SAMPLE
goal: a-take-salinity-sample
depth: 50

(isa ?feature a-take-salinity-sample)

(isa ?feature a-take-temp-sample)

resource-req: salinity-sensors

P-TAKE-TEMP-SAMPLE
goal: a-take-temp-sample
depth: 75
resource-req: temp-sensors

P-TAKE-SAMPLE
goal: a-take-sample
depth: (range (low 64) (high 86))
resource-req: sensors

goal

P-TAKE-SOIL-SAMPLE
goal: a-take-soil-sample
depth: 100
resource-req: soil-sensors

(matches ?feature a-take-soil-sample)

(isa ?feature a-take-sample)

goal

P-SAMPLE
goal: a-sample
depth: number
resource-req: resources

(indices from other MOPs)

Fig. 8 - Final Memory Contents

appropriate probe. This approach is referred to as opportunistic memory [3], and is
supported by the ULTM.

5.1 ULTM Opportunism Support

There are two sides to the opportunity recognition problem: the reasoning system’s
and the memory system’s. First, the reasoning system must be able to identify what
circumstances are blocking a goal’s progress. Then, using the goal and the
circumstances impeding it to form a probe, the memory system can use its regular
search mechanisms to find places to attach the suspended goal. Any time in the future
the memory system retrieves a MOP or case with a suspended goal attached to it, it
needs to notify the reasoner, which must then determine what to do with that goal.

To provide support for opportunism, the ULTM’s MOP structures have a slot called
suspended-goals, which is used by the memory system to associate suspended goals
with the MOPs. Further, two functions are provided to allow reasoning systems to
suspend and remove goals in memory: suspend-goal-in-ltm and unsuspend-goal-
in-ltm.

The function suspend-goal-in-ltm searches all memory contexts (i.e. all starting
points), retrieving any MOP the goal could be associated with. All contexts are
searched to increase the chances that a cross-domain opportunity will be recognized.
The goal, along with a descriptor of the reasoning system suspending the goal, is
associated with each MOP’s suspended-goals slot, while the goal maintains a list of
MOPs it is suspended on. The latter list is used by the unsuspend-goal-in-ltm
function to simplify finding everywhere the goal was attached.

Any time the ULTM finds a suspended goal, it must notify one or more reasoning
systems. It uses both an asynchronous and a synchronous mechanism for this task.
The synchronous method is simple: in addition to the list of MOPs that were found to
match the probe, the retrieve function also returns a list of suspended goals that are
attached to those MOPs.

The synchronous mechanism allows the reasoning system making a retrieval
request to detect when a suspended goal has been found. However, that reasoning
system may not be the one that originally suspended the goal. The asynchronous
notification mechanism is able to notify the reasoner that suspended the goal by
calling a handler function registered by the reasoner. These handlers are user-defined,
and are expected to send a message to the registered reasoner, allowing it to deal with
the suspended goal asynchronously.

5.2 Beyond Suspended Goals

We, along with almost all other researchers working in the field of opportunistic
reasoning, have focused almost exclusively on the recognition of opportunities to
satisfy suspended goals. This is for a good reason: goals are fundamental to
intentional reasoning systems. In fact, Francis [1] claims that opportunities must be
relevant to some goal held by the reasoning system. In spite of this contention, in this

section we consider predictively encoding in memory things other than goals that
would lead to opportunity recognition.

Stepping back for a moment, we note that the key functionality of the predictive
encoding mechanism is not that it can support the recall of suspended goals, but rather
that it allows the reasoning system to be reminded of something, anything, that has
been previously considered (reasoned about). Thus we can conceivably store
anything in memory that will cause the reasoner to interrupt its current activity and
reconsider whatever it was reasoning about when the item was stored.

For example, in the near future we will be undertaking a study into utilizing
opportunistic memory to recognize when a group of AUVs should restructure their
organization (the re-organization problem). Using such an approach, a reasoner
would select an initial organization for a group of AUVs based upon the given
mission and the currently available resources (e.g. the number of AUVs and the
equipment they carry). Suppose, however, that during the process of deciding on the
initial organization, another organization (represented by some structure which we
will call Org-1) is considered that would be superior, but cannot be selected because
some resources are missing. Org-1 could be predictively encoded in memory, using
the missing resources as recall cues. Should those resources later become available,
Org-1 would presumably be recalled by the memory system, which would notify the
reasoner.

The problem is that the reasoner must then determine what to do with this
reminding. When the item suspended in memory was a goal, this was fairly easy: just
recheck the conditions that caused the goal to be suspended, and reactivate it if they
are now met. We can do this because our reasoning systems already have the
infrastructure for dealing with goals. Reasoners would have to be modified to handle
remindings of other types. At this point, the extent of those modifications is a
research issue to be dealt with in the near future. It should be noted, though, that there
is nothing in the ULTM’s support for opportunism, as described in Section 5.1, that
precludes using it for suspending things other than goals.

6.0 Summary

The ULTM is a dynamic conceptual memory system that is capable of supporting
multiple reasoning systems simultaneously. It uses established structures and
procedures for all primary memory functions. Through a unique mixture of content
independent and domain specific mechanisms, it is able to provide reasoners accurate
and timely storage and recall of episodic memory structures in a flexible and robust
manner. Additionally, the ULTM provides support for recognizing opportunities to
satisfy suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage of
unexpected events.

References

1. Francis, A.G. Jr. (1997). “Memory-Based Opportunistic Reasoning”, Ph.D. Thesis
proposal, Georgia Institute of Technology.

2 . Hammond, K. (1990). "Case-Based Planning: A Framework for Planning from
Experience", The Journal of Cognitive Science, 14(3).

3. Hammond, K. (1993). “Opportunistic Memory”, The Journal of Machine Learning,
10(3).

4. Kellermann, K., Broetzmann, S., Lim, T.-S., and Kitao, K. (1989). “The conversation
mop: Scenes in the steam of discourse”, Discourse Processes, 12(1):27-61.

5. Kolodner, J. (1981). “Organization and Retrieval in a Conceptual Memory for Events",
Proceedings of the Seventh International Joint Conference on Artificial Intelligence.

6. Kolodner, J. (1989). “Selecting the Best Case for a Case-Based Reasoner”, Proceedings of
the Eleventh Conference of the Cognitive Science Society.

7. Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufman, San Mateo.
8. Patalano, A., Seifert, C., and Hammond, K. (1991). “Predictive Encodings: Planning for

Opportunities”, Proceedings of the Fifteenth Conference of the Cognitive Science Society.
9. Schank, R. (1982). Dynamic Memory, Cambridge University Press, New York.
10. Schank, R. and Osgood, R. (1990). “A content theory of memory indexing”,

Northwestern University, Institute for Learning Sciences Technical Report no. 2.
11. Steele, G. (1990). Common Lisp: The Language (Second Edition), Digital Press, Bedford,

MA.
12. Sycara, K. and Navinchandra, D. (1991). “Index Transformation and Generation for Case

Retrieval”, In Proceedings of the 1991 Case-Based Reasoning Workshop (DARPA),
Bareiss, E. (ed.), Morgan Kaufman, San Mateo, CA.

13. Turner, E. (1990). “Integrating Intention and Convention To Organize Problem Solving
Dialogues”, Ph.D. Dissertation, Georgia Institute of Technology technical report GIT-ICS-
90/02.

14. Turner, R. (1987). “Issues in the design of advisory systems: The consumer-advisor
system”, in Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, Detroit, MI.

15. Turner, R. (1994). Adaptive Reasoning for Real-World Problems: A Schema-Based
Approach, Lawrence Erlbaum Associates, Hillsdale, NJ.

16. Turner, R. (1995a). “Context-Sensitive, Adaptive Reasoning for Intelligent AUV Control:
Orca Project Update”, In Proceedings of the 9th International Symposium on Unmanned
Untethered Submersible Technology (AUV'95), Durham, New Hampshire.

17. Turner, R. (1995b). “Intelligent Control of Autonomous Underwater Vehicles: The Orca
Project”, Roy M. Turner. In Proceedings of the 1995 IEEE Conference on Systems, Man,
and Cybernetics, Vancouver, BC, Canada.

18. Turner, R. (1997). “Orca Documentation (for Version 2.1)”, CDPS Research Group in-
house report, University of Maine. http://cdps.umcs.maine.edu/Docs/orca-2.0/

