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Abstract

Much progress has been made in the last few years in both the areas of
context-sensitive reasoning and fuzzy reasoning. However, little work has ad-
dressed the intersection of the two, yet fuzzy knowledge, like other knowledge, is
context-dependent. The meaning of a fuzzy “linguistic value” such as “deep”—
that is, the shape of its membership function—depends very much on what the
current context is.

In this paper, we describe a mechanism for determining the meaning of
fuzzy values from the current context. In this approach, a reasoner uses infor-
mation about the meaning of fuzzy values contained in contextual schemas (c-
schemas), which are knowledge structures representing kinds of problem-solving
situations. The reasoner retrieves appropriate c-schemas from its memory and
merges their information to generate the dynamic context knowledge structure.
Information from this, when combined with other contextual information, al-
lows the reasoner to determine the context-dependent meaning of fuzzy values
of importance to it.

The work is part of the Orca project. Orca is a schema-based, context-
sensitive reasoner whose domain is intelligent autonomous underwater vehicle
control.

The context-sensitive nature of natural language expressions such as “deep”, “large”, etc., is
well known: “deep” might very well mean something quite different for an autonomous underwater
vehicle (AUV) when in a harbor than in the open ocean, and it will undoubtedly mean something
different for a shallow-water AUV than for a deep submersible. What is not as well examined,
however, is the similar context-dependence of the meaning of fuzzy knowledge.

*The author would like to thank the U.S. National Science Foundation for their generous support of this work
(grant BES-9696044) as part of the Orca project.



A fuzzy set [Zadeh, 1965] associates with all objects in some domain of discourse a member-
ship function; for any object, the function will give a value from the interval [0,1] representing
how strongly the object belongs to the set. This membership function is often considered to be
comprised of other functions that define fuzzy subsets of the parent fuzzy set. These fuzzy subsets
are generally referred to by meaningful names, such as “deep”, “shallow”, etc. We can think of
the subsets being the values of a linguistic variable, in this case, “depth”. The subsets can be
thought of as linguistic values. (See, e.g., [Zadeh, 1994].)

In almost all work in the burgeoning field of fuzzy logic (or fuzzy reasoning, or fuzzy control,
etc.), a linguistic value has a fixed membership function. That is, if a depth of 20m has 0.7
membership in the fuzzy subset “deep”, then it will always have that value.

This is unrealistic, however, especially when we consider that the membership function defines
the meaning of the linguistic value; for example, the membership function for “nominal” defines
what it means for a particular entity (e.g., an AUV) to have a depth considered to be nominal.
This meaning is highly context-dependent. As the situation changes, the membership function
should change to reflect the fact that the agent (the AUV) changes its notion of what “nominal”
means, as shown in Figure 1. In this case, the membership function should change based on the
different target depth in each mission.
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Follow path, staying at 15m depth. Follow path, staying at 25m depth.

Figure 1: Different membership functions for “nominal” in different contexts.

One could, of course, use different linguistic values or even different linguistic variables to
achieve the same purpose. In the situation above, we might define linguistic values “nominall”
and “nominal2”, each having the meaning of nominal in a particular context, and each with a
different membership function. But this loses information—in particular, the information that
somehow the two membership functions, though not the same, are related in their meanings.

More important from a pragmatic standpoint for an artificial reasoner, we are likely to have
rules that should apply in both contexts, and that we would not like to change to have different
versions for each context. For example, the rule:

if depth of AUV is less than nominal
then go down

is appropriate in either context. It would be inefficient, increase the difficulty of maintenance, and
decrease the understandability of the program (either by a human or by the program itself) to
have to have two rules, one for “nominall” and another for “nominal2”. Given that a particular
reasoner might operate in many hundreds of different situations, the problem quickly becomes
serious.

What is needed, then, is a method of referring to a particular fuzzy subset (linguistic value)
whose meaning, as reflected by its membership function, is allowed to change with the context.



Though there has been increasing interest in context-sensitive reasoning in the last few years,
including two workshops on the topic [Brezillon, 1993; Brezillon, 1995], most of the work has
focused on formalizing context [e.g. McCarthy, 1993; Bouquet & Cimatti, 1995]. The work
that has focused on real-world problems [e.g., Turner, 1989; Turner, 1993; Pinto et al., 1995;
Abu-Hakima & Brezillon, 1995] has not addressed the problem of how to change the meaning of
linguistic values as context changes.

In the Orca project, we have begun to address this problem. Orca [Turner, 1994; Turner, 1995
is an intelligent AUV controller being built at the University of Maine for use with AUVs at the
Autonomous Undersea Systems Institute (AUSI) and elsewhere. It is also a laboratory for the
development of a variety of artificial intelligence techniques necessary for intelligent agent control.
One of these techniques is context-sensitive reasoning.

In this paper, we describe a mechanism being developed to allow Orca to determine context-
dependent meanings for fuzzy subsets representing values for linguistic variables. This mechanism
is based on the use of contextual schemas (c-schemas) [Turner, 1989; Turner, 1994], which rep-
resent classes of problem-solving situations. Orca retrieves the most relevant contextual schemas
and merges them into a structure representing the dynamic context of the agent. From that
dynamic context, by a process of lazy (i.e., as-needed) evaluation, Orca constructs the member-
ship functions of fuzzy subsets. This provides a mechanism for the reasoner always to know the
context-appropriate meaning of a fuzzy subset.

Context-Sensitive Reasoning in Orca

Orca is an intelligent controller for real-world agents, in particular, AUVs. It is a schema-
based reasoner [Turner, 1994], meaning that all of its problem-solving knowledge is represented
in packets of knowledge called schemas. One kind of schema, the procedural schema (p-schema),
contains planning knowledge equivalent to hierarchical plans, scripts, rules, and the like. The other
kind of schema is the contertual schema (c-schema), which allows Orca to do context-sensitive
reasoning. A diagram of Orca is shown in Figure 2.
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Figure 2: Internal structure of Orca.

Contextual schemas represent classes of problem solving situations. For example, in our do-
main a reasoner would have c-schemas representing: being in a harbor, being in the open ocean,
conducting a search mission, operating under low power conditions, and so forth.



Orca’s long-term memory (LTM) indexes its schemas by the features of the situations for which
they are appropriate [Turner, 1994]. Based on the features of the current situation, LTM retrieves
appropriate schemas and passes them to Orca’s other modules. C-schemas are sent to the Context
Manager (CM).

There are three kinds of context that Orca is concerned about. The static context is that
portion of the agent, its environment, and its knowledge unlikely to change over the course of a
mission (though it certainly is not static when considered over longer time scales). This includes
“default” knowledge such as the AUV’s normal operating envelope (e.g., crush depth, maximum
speed, etc.). The dynamic context consists of the features of the agent, its environment, and its
knowledge that do change during the mission. For example, the dynamic context is different when
the agent is in a harbor than when it is in in the open ocean or aboard its support vessel. The
ephemeral context is the context established by the focus of one of Orca’s module’s reasoning. For
example, if one of them is querying working memory about the AUV’s depth, then the ephemeral
context includes the fact that the AUV’s depth is under consideration. This is used, as we will
see, to help find and/or create the linguistic value’s meaning in the context.

When CM receives c-schemas from LTM, it examines them further to ensure that they are
indeed appropriate for the current context. Those that are are used to model the agent’s dynamic
context; the knowledge structure created is also called the dynamic context.

The dynamic context, like c-schemas themselves, contains a great deal of information about
situations similar to the context it represents. This information includes: features of the world,
agent, or mission that must be or must not be present for the context; predictions about possibly
unseen features; predictions about events that might occur, as well as how to handle them (i.e., how
to diagnose them, assess their importance, and respond to them); p-schemas that are appropriate
for particular goals in the context; importance of working on particular goals in the context; and
“standing orders” about what automatically to do when entering or leaving the context [Turner,
1994; Turner, 1995]. Of particular interest to us here is information contained in the c-schemas
and dynamic context about the meaning of fuzzy subsets.

Fuzzy Information in Orca

Orca’s knowledge representation is frame-based. Some information is represented directly as
values of slots of frames; for example, an AUV’s depth would be represented in slot depth of the
corresponding frame (e.g., "EAVEOQ, representing one of the EAVE (Experimental Autonomous
VEhicle) AUVs). Orca also represents facts that are not associated with any particular frame, or
those that are about multiple frames, as predicate calculus-like expressions in its working memory
(WM). Predicates themselves are represented as frames (e.g., “depth), so Orca has access to the
meaning of the facts by using its frame system.

Orca can associate fuzzy values with either frame slots or facts in WM. For instance, the depth
of a sunken wreck might be known only to be “deep”, and this fuzzy value would be stored in the
frame representing the wreck; likewise, the distance from shore to the wreck might be known only
to be “far”, which would be stored in WM in a fact about the relative distance. In the case of
a frame slot, a description of the fuzzy values it can take on is indicated in the slot’s fuzzy-set
facet, and the actual fuzzy value appears in its fuzzy-value facet:



AEAVEQ:
depth: 10
fuzzy-set: Ms-depth-EAVE-magnitude
fuzzy-value: ((10 0) (10 1) (10 0))
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We refer to the things that can have fuzzy values as linguistic variables [Zadeh, 1994]. We
allow symbolic linguistic values to refer to values for these variables. Linguistic values are names
for distinguished fuzzy subsets, that is, for membership functions relating numeric values to mem-
bership in the subset. Fuzzy subsets’ membership functions, in our approach, are point lists: lists
of points that define a polyline representing the shape of the membership function.

Since the meaning of linguistic values—i.e., their membership functions—change with context,
the symbolic names do not usually appear directly as values for linguistic variables. Instead, when
a fuzzy value is asserted for a variable, the current membership function—a point list—is inserted
into the variable. The symbolic form of the value is only used when asserting a fuzzy value or
when querying the value that is there (e.g., to see if the value is “deep”). This way, even when the
context changes, the value that was asserted in (and had meaning in) the old context retains an
absolute meaning as defined by the point list. This value can then be reinterpreted in the changed
context.

For example, suppose that Orca is told that the AUV’s depth is “nominal” in the context of
a mission requiring it to maintain depth at 5 meters. The actual fuzzy value stored in the depth
slot of the frame might be something like:

(0 0) (5 1) (10 0))

rather than the symbol “nominal”. When the context changes to require the AUV to maintain a
depth of 10 meters, the point list remains the same and will probably be taken to be “too shallow”
in the new context. Had the symbolic form of the linguistic value been used, then Orca would
erroneously believe that the depth is still nominal in the new context.

Fuzzy Information in the Static Context

Orca’s “static context” is the information it has about the world that does not change over the
course of its mission, what we might call its “default” knowledge. Part of this knowledge includes
information about fuzzy values.

Some information about fuzzy values is predefined in Orca as part of its frame knowledge.
Fuzzy sets whose subsets commonly provide values for linguistic variables are defined as frames.
For example, the depth slot of the frame representing the EAVE, as shown above, is a linguistic
variable that is defined by the fuzzy set “fs-depth-EAVE-magnitude.!. This frame has defined
subsets, corresponding to distinguished linguistic values, including “crush-depth”, “too-deep”,
and “nominal” (in the default case, at the surface, as a safety measure):

IThe carat in front of the name denotes that this is a frame.



fs-depth-EAVE-magnitude
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Each of the defined subsets is in turn represented as a frame. For example, linguistic value
“nominal” is defined by frame "fz-depth-EAVE-magnitude-nominal:?
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shape: left-triangle g
membership-function: ((0 1) (2 0)) h
combination-type: (replace-by any) f)
10 20 30 40 50
Depth

With each subset is an indication of how to merge its membership function with other values
from the dynamic context. For example, “fz-depth-EAVE-magnitude-nominal specifies that any
other information known about the “nominal” linguistic value in the context of the AUV’s depth
should replace its own membership function. This is a failsafe mechanism in this case: if nothing
else is known (e.g., no mission, no other salient context), then Orca should go to the surface.

Fuzzy Information in C-schemas

Contextual schemas provide information about the context-specific meaning of certain fuzzy
subsets, in particular, those whose meaning changes in some significant way in the context the
c-schema represents. The new meaning is provided in the form of information about what the
fuzzy subset’s membership function should be in the context the c-schema represents.

Orca cannot be sure that the information contained in a c-schema should completely supplant
the default meaning of a subset as provided by its static context: the fit between the c-schema and
the current situation may not be exact. In addition, Orca can (and most often will) use more than
one c-schema to represent the current dynamic context. For example, the current situation may
equally well be viewed as an instance of “in harbor”, “on search mission”, or “operating under low
power”. Consequently, information from all sources—static context and all the relevant c-schemas
in the current dynamic context—must be merged into a coherent meaning for the subset in the
current context.

A c-schema contains information about linguistic values of linguistic variables having particular
meaning in the context it represents when that meaning is is likely to be different from that in the
static context or in other c-schemas. In our approach, c-schemas contain the following information
about each pertinent linguistic value:

e the membership function itself (represented as a point list);

e an inder that uniquely specifies which linguistic variable/value combination is being
referred to;

e the degree of belief (certainty) in the fact that the membership function is as stated;
and

e the way in which the membership function should be merged with other knowledge
about the membership function that Orca may have at that moment.

2The “shape” and “domain” slots are used when creating the frame to define the membership function.



There are three types of indices, each corresponding to a different way Orca can specify lin-
guistic variables and values. First, as we saw above, some frame slots are linguistic variables,
such as “depth”. The index for these would consist of a description of the slot and the value
being referred to, for example: (:slot “EAVEO depth)/deep. The first part of this index is the
variable’s canonical address: i.e., a unique identifier for the variable.

Second, Orca allows non-frame assertions to be made about the world; these facts, though
frame-based (the predicates themselves have meaning as defined by frames), are stored as first-
order predicate calculus-like formulae in working memory. It is desirable for these to specify
linguistic variables as well. For example, consider the fact:

(distance-between “EAVEO “BARGE1l small)

In this fact, small is the value of a linguistic variable associated with this fact; the meaning of
small would change with context. The index for linguistic values associated with this fact could
be one of:

(:fact (distance-between “EAVE ~“BARGE))/small
(:fact (distance-between ~“EAVEQO "“BARGE))/small
(:fact (distance-between ~“EAVEO "BARGE1l))/small

or others, with the difference being that the frame names not ending in numbers represent classes
of things (eg., barges) rather than a particular individual. Thus the first index refers to the value
“small” for the linguistic variable associated with the distance between any EAVE and any barge,
the second between a particular EAVE and any barge, and the third between a particular EAVE
and a particular barge. Each of these combinations may have different implications for what the
membership function of “small” should be in different contexts.

Third, other fuzzy information in Orca resides in its frames representing fuzzy sets and subsets.
Fuzzy sets specify some attributes of linguistic variables that frame slots (e.g.) use to describe
the linguistic variable they represent. Fuzzy subsets describe the default attributes and meaning
of some of the values for those variables. One way to indicate sweeping context-related changes
of meaning is by allowing a c-schema to temporarily redefine a fuzzy subset. To do this, it may
use indices such as:

“fs-depth-EAVE-magnitude/nominal
“fz-depth-EAVE-magnitude-deep

The first index provides a new membership function for anything that refers to the “nominal”
distinguished subset of the fuzzy set; the second directly provides a new membership function for
one such subset.
Information about how to merge fuzzy contextual information is in the form of directives that

the Context Manager will follow when creating the dynamic context. These include:

e replace other membership functions;

e take the union of this with other membership functions (the current default); or

e use the information only if there is no other information about this linguistic value.

In any case, if no other information exists, the membership function is assumed to be what is
specified in the c-schema.



Forming the Dynamic Context

When the context changes (at system start-up, when a new c-schema becomes relevant, or
when an old c-schema is no longer relevant), Context Manager’s task is to create a dynamic
context structure that adequately represents the current context. Part of this consists of taking
all information about each linguistic value of interest in the current context and merging it to
form the context-specific meaning of that value.

When CM merges information about a linguistic value, it stores it in a table of membership
functions in Orca’s working memory to allow other modules to access the new meaning of the
linguistic value in the context. Two things are important to consider about this table: how the
information can be accessed, and how—and under what circumstances—the table is updated.

Access to the table’s information is via indices describing the linguistic variable the linguistic
value is for. These are the same as the indices described above that appear in c-schemas. To
find the meaning of a particular linguistic value, the module wishing to do so first determines
what the index is for the linguistic variable in question, then presents it to WM, which returns
the membership function. For example, should we want the current membership function for
the linguistic value “deep” in the current dynamic context and in the context of the linguistic
variable “depth of "EAVEQ” (the ephemeral context; see below), we would use the index: (:slot
~EAVEO depth)/deep.

Updating the information in the table involves merging, for each linguistic value, the member-
ship functions specified in the static context and in all c-schemas comprising the dynamic context
that specify information about the linguistic value. CM does this according to the directives
present in the context-dependent information.

For example, suppose we are interested in the meaning of “nominal” for the depth of "EAVED.
The static context for this linguistic variable is shown above. If we are in the context of a mission
requiring the AUV to maintain station at 10 meters depth, then a c-schema that is part of the
dynamic context might provide information about this linguistic value of the following form:

M
(Ivalue (address (index (obj-desc (:slot AEAVE depth)) e
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(Ivalue-desc nominal))) b
(membership-function ((0 0) (8 0) (10 1) (12 0))) ?
(combination-type (union))) }Sl
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In this case, the dynamic context’s information would replace that in the static context because
of the static context’s combination directive, (replace any) (see above).

As another example, suppose EAVE has a crush depth of 50 meters. The static context
may indicate this by defining an linguistic value representing “at crush depth” as well as one
representing “too-deep”; the latter might have a membership function such as:

((45 0) (50 1))

as shown above, and the combination type union, meaning to take the union of this membership
function with any other. The same mission context as before might define:



(lvalue (address (index (obj-desc (:slot AEAVE depth))
(Ivalue-desc too-deep)))
(membership-function (10 0) (15 1)))
(combination-type (union)))
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The union of these two membership functions would be taken, to give a combined entry in the
membership function table of the form:

((10 0) (15 1) (50 1))

The task of merging membership function information is potentially quite time-consuming,
especially when one considers that the context is likely to change often during the course of a
mission. To ameliorate this problem, we take a lazy evaluation approach. Information is placed
in the table and updated only as needed.

We can determine need in one of two ways: when there is no information for the specified
index already in the table, and when information is in the table, but is out of date. The first case
is easy to detect. To help detect the second, CM generates a unique context token each time it
changes the dynamic context. When information about linguistic values is placed in the table, it
is tagged with the current token. When information is needed from the table, the token associated
with the existing table entry is compared to the current context token. If they are the same, the
existing information is used; if not, CM is asked to compute a new estimate of the membership
function for the linguistic value.

Using the Information: The Ephemeral Context

When an Orca module needs information about a linguistic value’s membership function, it
must identify the linguistic value it is interested in by more than just that linguistic value’s name:
it must also specify the linguistic variable for which it is a value. This in turn depends on what the
module is “thinking about”: if the query is about the AUV’s depth, then the linguistic variable is
“depth of "EAVEQ”, if about the depth at which a sample was taken, then “depth of “CTD-sample”,
etc.

We call this the ephemeral context: the information about the query used to uniquely identify
which linguistic variable is being referred to. This, plus the linguistic value itself, is what WM
uses as the index with which to look for information in the table of linguistic value membership
functions.

For example, suppose Orca’s Event Handler (EH) is trying to determine if the AUV’s depth is
too deep; if so, then it will recommend the action of ascending in the water column. EH’s query
to WM might look like:

(depth $self too-deep)
where $self refers to the reasoner itself (e.g., "EAVEO).

Based on knowledge it has about what the “depth” predicate means®, WM will determine that
this query has a canonical address of: (:slot “EAVEO depth). This, along with the linguistic
value name “too-deep”, becomes the index used to find the proper membership function.

3From Orca’s frame-based definition.



Predicates that do not correspond to frame slots also have canonical addresses that WM can
use as indices. For example, the fact? (distance-between “EAVEO ~BARGEO) has the canonical
address:

(:fact (distance-between ~EAVEO ~BARGEO))

that is, the fact itself.
WM often needs to do more work than this, however. For example, suppose the query was
instead one of the following:

(> (depth $self) nominal)
(and (depth $self ?depth) (> ?depth nominal))

two different ways of specifying “depth is greater than nominal”. In these cases, WM must realize
that the ephemeral context is still the AUV’s depth, even though the clause specifying this is
separate from the linguistic value’s name in the query.

Example

Suppose that Orca controls an EAVE AUV with frames as described above. Suppose further
that the Event Handler module has the following rules:

R1: if depth is deeper than nominal R2: if depth is shallower than nominal
then go up then go down

The antecedent of each contains the query to WM:
(> (depth $self) nominal)

When the AUV is first launched, EH will analyze the current situation and recognize that the
depth is 0. It will query WM to determine how this relates to the nominal depth. The current
dynamic context likely will provide no information about the depth. Consequently, WM uses the
ephemeral context of the query, looks in the dynamic context structure, finds nothing, and uses
the information about the nominal depth from the static context. By this criterion, the depth is
nominal, and so neither rule fires.

Suppose that now Orca is given a mission: move to (100,100,10) and hover for twenty seconds,
recording temperature data. The dynamic context during the move to the new location should be
“moving to waypoint”, which will likely not provide any depth information.’

However, when hovering, the dynamic context will provide the information that the nominal
depth is 10 meters. Assuming that the AUV is at this depth, then neither rule will fire. However,
suppose a sudden current moves the AUV to a depth of 9 meters. Now when EH asks WM about
the depth in relation to nominal:

e WM uses the ephemeral context and linguistic value of interest to form the index:
(:slot "EAVEO depth)/nominal

4This is actually a partial fact—a way of referring to a fact in WM. The full fact would also contain the value
for the distance.

50r, rather, the information it does provide will be more complex than what is being discussed here, instead
being a motion envelope; adhering to the bounds of such an envelope is left for future work and is beyond the scope
of this paper.
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e WM retrieves the membership function for this from the dynamic context and com-
pares the current depth (9 meters) to it:
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e WM reports that the AUV’s depth has only 0.5 membership in the subset nominal;

and
e rule R2 fires with a confidence level of 0.5, so EH causes Orca to go down (by asking
Agenda Manager to activate a goal to go back to the nominal depth).

We must stress that the actual event-handling process is much more complicated than this
(see, e.g., [Turner, 1994]), which is reminiscent of a simple fuzzy controller. Note, however, that
this technique should be appropriate for such controllers as well.

Conclusion and Future Work

Context-sensitive reasoning is necessary to adequately deal with fuzzy knowledge in realistic
domains. The membership functions associated with values of linguistic variables change de-
pending on the context. Without some sort of context-dependent mechanism to determine the
membership functions needed, there would be an explosion in the number of linguistic values
needed, and reasoning with fuzzy knowledge would quickly become impractical.

In this paper, we have described one such mechanism for determining the context-dependent
meaning of linguistic values. Knowledge about the dynamic context of problem solving, from
contextual schemas representing aspects of the current situation, is merged with unchanging fuzzy
knowledge (from the static context) to generate a membership function appropriate for a linguistic
value in a particular situation. As the reasoner needs to compare existing crisp or fuzzy values with
known linguistic values, or as it needs to assert that a linguistic variable has a particular value,
it looks up that value in a table in the dynamic context using a description of the variable and
value as an index. A lazy evaluation mechanism is used to prevent unproductive work updating
the table when the context changes rapidly.

The mechanism described here is part of a larger context-sensitive reasoning project, the Orca
project. Orca will use this mechanism for event handling and attention focusing. Each of these
tasks involves fuzzy rule-based systems that rely on the mechanism described here to evaluate
their rule antecedents and to assert fuzzy values by their consequents.

The work reported here is preliminary and in progress. At the current time, Orca’s fuzzy rule-
based systems are implemented; the mechanism for context-dependent determination of linguistic
values reported here is being implemented at the time of writing and should be complete by the
time of publication.

Future work will extend this mechanism, particularly with respect to the way in which mem-
bership functions can be combined and in resolving the inevitable conflicts that arise whenever
merging information from disparate sources. In addition, we will begin to explore whether the
mechanism reported here is a reasonable start toward addressing the general problem of context-
dependent meaning of knowledge other than fuzzy knowledge.
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