Task Assignment in AOSNs: A Constraint-based Approach

Elise H. Turner*
Computer Science Department
University of Maine
Orono, ME 04468

ABSTRACT

To allow multi-component systems, such as Autonomous Oceanographic Sampling Networks (AOSN),
to autonomously organize and reorganize, there must be a method for assigning components of the systems
to tasks. In this paper, we present a method for making these task assignments. Our method is based
on constrainted heuristic search (CHS) [1]. We represent the problem of task assignment as a constraint
satisfaction problem using the CHS formalism. The method is extended to handle alternative methods
available for performing the mission.

1 Introduction

We envision an Adaptive Oceanographic Sampling Network (AOSN) which allows differently-
abled Vehicles and Instrument Platforms (VIPs) to be adaptively configured to perform a variety of
data collection tasks. The AOSN will autonomously organize and reorganize to adapt to changes in
the task and in the composition of the AOSN. By creating or changing organizations autonomously,
the system frees the user from possessing the expertise needed to organize the VIPs and allows the
system to respond to changes even when no user is present.

We are using a two-level approach to organization and reorganization [2; 3]. The meta-level
organization (MLQO) is composed solely of VIPs that are capable of reasoning about other agents,
the task, and the organization. Its purpose is to create the organization of all VIPs that will
perform the tasks of the AOSN. The MLO is organized for flexibility. It must be able to create an
organization for any task given any number and type of VIPs, whenever possible. As the situation
changes, the MLO may be required to create several organizations for several different tasks. The
MLO will also need to adapt to a changing situation. The MLO may be expanded or contracted
as potential members enter and exit the AOSN.

The task-level organization (TLO) performs the work of the AOSN. It should be designed for
efficiency. To create the TLO, the MLO must decide on an organizational structure that determines
the roles of members of the organization and the lines of communication between the VIPs filling
those roles. These roles are the individual subtasks of the assigned domain task and the managerial
tasks required to manage the VIPs. For example, a strict hierarchy is an organizational structure
in which VIPs filling roles directly related to the AOSN’s task communicate with specific VIPs who

*This work was funded in part by contract N0001-14-96-1-5009 from the Office of Naval Research. Thanks to
Dick Blidberg, Steve Chappell, Jim Kadin, Jim Jalbert, Roy Turner and the UMaine CDPS group for many insightful
comments on this work. Special thanks to Steve Chappell who is responsible for the programming on this project.

have the task of managing them. The MLO must also assign particular VIPs to the tasks that
must be performed. We call this task assignment.

In this paper, we will describe a technique for creating a task assignment. Our technique
is based on Constrained Heuristic Search (CHS) [1], a problem solving method that combines
constraint satisfaction and heuristic search. CHS must be extended for task assignment because
tasks can often be done in many different ways. In Section 2 we present a brief introduction to
CHS and explain why we chose it for task assignment. In Section 3 we discuss the need to extend
CHS for our problem and present the algorithm that we are currently implementing. In Section 4
we illustrate our technique with an example. We conclude in Section 5.

2 Constrained Heuristic Search

2.1 Introduction to Constrained Heuristic Search

Many problems can be characterized as a set of variables that must have values assigned to
them and a set of constraints on those values. There are many approaches to solving constraint
satisfaction problems (CSPs), each appropriate for certain tasks and types of constraints. One
approach is to see the CSP as a state space search problem. The initial state is some assignment
of sets of potential values to the variables; the goal is an assignment of a single value to each
variable so that the value does not violate any constraints. Operators on the states reduce the
set of potential values of some particular variable. Applying these operators leads to intermediate
states with different partial assignments. The search space is pruned in two ways. First, constraint
propagation is used to remove values from the sets of potential values that no longer satisfy the
constraints. Second, specific, well-studied heuristics can be used to choose the assignment that
should be tried next.

Constrained heuristic search (CHS) combines constraint satisfaction and heuristic search. Search
states are constraint graphs. As in standard CSP’s, variables are represented as variable nodes and
their domains are their remaining potential values. Constraints are also represented by nodes which
are adjacent to the variables whose values they restrict. There are also satisfiability nodes which
are adjacent to the constraints which they AND or OR together. The topology of the constraint
graph can be characterized by a set of textures. Heuristics are developed to approximate these
textures. The heuristics can then be applied to determine which operator should be applied and
what search state can be generated next. Because the operators choose the variables and values
that should be restricted to percipitate constraint propagation, these choice points are now treated
within the well-studied technique of heuristic search.

The algorithm for CHS appears below. We quote from Fox et al.’s paper [1], altering it here
only to number the steps for easy reference.

An initial state is defined composed of a problem topology.

Constraint propagation is performed within the state.

Texture measures and the problem objective are evaluated for the state’s topology.
Operators are matched against the state’s topology, and

A variable node/operator pair is selected and the operator is applied.

ANl

We have selected CHS for task assignment for three reasons:

1. Constraints are handled efficiently through the constraint propagation portion of the
technique.

2. A solution will be found if one exists.

3. A distributed form of CHS, DCHS [4], has been developed which can be used to
distribute the work of task assignment across the entire MLO.

However, CHS must be extended for use in task assignment. CSP’s in general, and CHS in
particular, assume that all variables will be assigned a value. For task assignment, this is not the
case. The mission is broken into the tasks which must be performed to complete the mission. These
tasks are further broken down to find the primitive tasks, or executable actions, which the VIPs can
perform. This is called the task decomposition. Since there may be many ways to achieve any task,
the task decomposition includes many alternatives. Only one alternative for each task needs to be
performed, so only the executable actions associated with that alternative need to be assigned to
a VIP.

Consequently, the CHS algorithm must be extended to handle the fact that all executable
actions will not, ultimately, be included in the task assignment. We could extend the formalism
for the constraint graph to add satisfiability nodes that are adjacent to variables. This leads to a
confusing graph with many superfluous nodes that affect the solution even though they will not be
part of the actual task assignment. Instead, we extend the algorithm by adding an operator that
selects the appropriate capabilities and adds them to the constraint graph. The capabilities can be
selected following the textures that have been suggested for CHS so that the selection will not hurt
the efficiency of CHS.

3 CHS for Task Assignment

We can divide our work into two parts: formalizing task assignment in a constraint graph and
extending CHS to include the select-capability operator. Although we intend to integrate this
operator in to the CHS algorithm at Steps 4 and 5, we currently implement it as a preprocessing
step. This simplifies the design and allows us to obtain preliminary results.

3.1 Representing Task Assignment as a Constraint Graph

It is natural to view task assignment as a constraint satisfaction problem. The variables of
the problem are the roles in the organizational structure that must be filled. These roles can be
characterized by the capabilities required to fill the roles. The domain of these variables can be
defined initially as the VIPs which have the needed capability.

Constraints on the variables restrict the way in which roles associated with particular tasks can
interact and capture the resource limitations of the VIPs.! Constraints can be easily added to any
constraint satisfaction problem, and we expect to find more constraints as we continue this work.
For now, we have implemented a single resource constraint. The resource constraint checks that a
VIP can perform all of the tasks to which it is assigned. We currently use a simple representation
of resources and work space to check if the VIP has to work beyond its resources or has to move
too far between tasks. The VIP has some number of resource units that can be used during the
mission, and each task requires some number of units. We also require that all of the tasks of the
VIP be within that VIP’s volume-of-work. The resource constraint holds between all variables for
which the VIP is in the domain.

We can also represent this limitation on the initial domain, that all VIPs in the domain have the required
capability, as a unary constraint on the variables. We choose instead to limit the domain because this is useful for
the extensions discussed in Section 3 and can be used in a distributed version of CHS.

Domain: 3
Resource Units: 4

Domain: 14,5
Resource Units: 3

Domain: 2
Resource Units: 3

Figure 1: A simple constraint graph for task assignment.

A constraint graph for a task assignment problem is shown in Figure 1. The figure shows three
tasks that must be performed by some VIPs. These tasks require the capabilities, A,B and D. The
variable nodes are labeled with the capability. The identifying numbers of the VIPs in the variable’s
domain and the resource units needed to perform the task are also shown. The constraints are the
nodes Cl1 and C2. C1 represents the resource constraints on VIP4. It is adjacent to A and B
because VIP4 is in the domain of both of these variables. Similarly, C2 represents the resource
constraints on VIP2. There are no constraints for the other VIPs because they are in the domain
of only one variable.

We are currently using very simple heuristics which are widely used in constraint satisfaction
problems. When necessary, we choose a value for a variable by finding the variable with the fewest
values remaining in its domain and then choosing the value that remains in the domain of the
fewest variables.

3.2 Extending CHS

We extend CHS by adding a select-capability operator that will choose the capabilities that
will be included in the constraint graph. The capabilities are selected from the task decomposition.
When a capability is selected, it is added to the constraint graph. The process is repeated until
all the capabilities required to perform some decomposition of the mission have been added to the
constraint graph.

3.2.1 Representing the Task Decomposition

The task decomposition must be created by a planner that can reason about how the mission
can be performed. We expect the MLO to construct the task decomposition during a previous
phase of TLO creation so that it is available during task assignment.

The task decomposition is represented in an AND-OR tree like the one in Figure 2. A task,
such as the mission, is specified in terms of the steps which can be performed to accomplish it.
In out example, T1 and T2 must both be performed to accomplish the mission. Since both tasks
must be performed, they are ANDed together, as represented by the link between the nodes. Tasks
can also have alternative methods for achieving them. For example, T1 can be performed either
by performing Alt-T1-1 or Alt-T1-2. The mission is decomposed to executable steps at the leaves
of the tree. In our work, executable steps are represented in generic behaviors, or capabilities [5].

<>

oo
g6 &5
Ao @O0

Figure 2: The task decomposition of a mission.

If no children for node, at leaf. Return number of VIPs which can perform the task.
If the node is the root, return the child with the maximum value as the selected alternative.

If node is an AND node, return the minimum value of all of its children

W N

If node is an OR node, return the maximum value of all of its children

Figure 3: Selecting an Alternative.

3.3 Selecting the Capability

We would like to select capabilities in a way that takes their future role in the constraint graph
into account. For that reason, we choose among the capabilities using measures that reflect textures
of the constraint graph.

Selecting capabilities is complicated because the task decomposition is represented in an AND-
OR tree. Our algorithm starts at the root mission node and selects between its children. If the
children are ORed together, a child is selected using the select-alternative algorithm. If the children
are ANDed together, a child is selected using the select-subtask algorithm. The selected child is
then used as the root of the tree and the process continues until a leaf is reached.

Select Alternative

Following the value goodness texture [1], we choose the alternative that can be satisfied by the
greatest number of values. This gives the constraint algorithm the most flexibility. Figure 3 shows
the recursive algorithm used for selecting between alternatives. Since the VIPs that can perform
the task give the potential values for the variables, they provide the basis for the selection. These
values are propagated up the tree from the leaves so the interdependence of the ANDed siblings
can be taken into account. This is standard for AND-OR trees. We assume that the VIPs which
can perform the capabilities in the task decomposition are associated with those capabilities before
any capability selection is performed.

Select Subtask

Following the constraint reliance texture [1], we choose the subtask with the fewest possible
alternatives. Since this subtask is the most constrained, it needs to be added to the constraint
graph early. Figure 4 shows the recursive algorithm for selecting the subtask.

If no children for node, at leaf. Return 1.
If the node is the root, return the child with the minimum value as the selected subtask.

If node is an AND, return the minimum value of all its children.

- W o

If node is an OR, return the sum of the values for all its children.

Figure 4: Selecting a Subtask.

3.3.1 Adding the Capability to the Constraint Graph

When a capability is added to the constraint graph, it must be connected to constraints which
affect it. For each VIP in its domain, it finds the appropriate constraint and places itself on that
constraint’s adjacency list. If by adding this capability, the limit of variable’s resources is exceeded,
it removes the variable from the domain of the capability with the largest domain. This variable
follows the value goodness texture [1]. If domains are of the same size, the value is removed from
the domain for the capability which requires the fewest resources. If a variable is removed from
any domain, constraints are propagated.

Any capability that is in the task decomposition could be part of the final method for achieving
the mission and, consequently, is a potential node in the constraint graph. When the MLO selects
a capability to add to the constraint graph, it becomes a committed node because the system
is committed to including it in the final solution. We do not want potential nodes to restrict the
values of committed nodes because the potential nodes may not be included in the solution. On the
other hand, if we allow the committed nodes to restrict the values of potential nodes, we get better
information for selecting capabilities to add to the constraint graph. In our current implementation,
constraints are only propagated between committed nodes. This is the simplest method we can
adopt for our preliminary system. In the near future, we will implement and evaluate propagating
constraints from committed to potential nodes.

3.3.2 Selecting Additional Capabilities

All capabilities required to perform the mission, and only those required to perform the mission,
should be added to the constraint graph. To keep track of the capabilities that remain, we copy
the task decomposition tree and remove nodes as they are added to the constraint graph. When
no nodes remain in the copy, we have selected all of the capabilities.

Siblings of the node are removed from the task decomposition copy if they are ORed to that
node. They remain in the copy if they are ANDed to the node. A parent is removed when all
of its children are removed. In this way, nodes that will not affect the solution are removed from
consideration, and nodes that must be selected in conjunction with previously-selected nodes remain
in the graph.

4 An Example

We illustrate our method of task assignment with an example. Suppose the task decomposition
of Figure 2 is provided by the MLO. Next, VIPs are identified which have the required capabilities.
The annotated task decomposition graph is shown in Figure 5. We assume all VIPs have 5 resource
units. For simplicity, we omit constraints on the volume of work.

First, a capability is selected. Since all the values for the textures remain the same until the
graph is changed by removing a leaf, we can calculate both values once and use them throughout

VIPs: 1,53 VIPs: 2.3 VIPs: 14,7 VIPs: 14,7 VIPs: 23 VIPs: 2
R Units:5 R Units: 3 R Units: 5 Resource Units:4 Resource Units: 3 Resource Units: 2

Figure 5: Annotated task decomposition for the example mission.

Domain: 14,7
Resource Units: 5

Figure 6: Constraint graph after D1 has been added.

the entire selection process for one capability. The values are shown at each node. Values for
select-alternative appear in squares; values for select-subtask appear in circles. Since both T'1
and T2 have the same value as subtasks, T1 is arbitrarily selected at Mission. It’s children are
ORed together, so the alternative with the maximum value, Alt-T1-2, is selected. There is only
one alternative here, so D1 is added to the constraint graph.

The new constraint graph is shown in Figure 6. For bookkeeping purposes constraints for each
VIP are added to the graph, even though the values have already been checked to ensure that the
resources needed do not exceed the VIPs’ limits. These constraints will make it easier to add new
capabilities. In the figure, constraints are labeled “Cx” where x is the number of the VIP associated
with the constraint. No constraints are propagated.

The selected node is removed from the task decomposition tree. Since it has no siblings, when
D1 is removed, Alt-T1-2 becomes childless and is removed. Alt-T1-2’s siblings are ORed together,
so they are removed. This leaves T1 childless, so it is removed. T1 is ANDed to T2, so T2 remains
as the only child of the mission. Figure 7 shows the new graph. The values for select-alternative
and select-subtask must be recalculated. In this case, they have not changed because no values
were removed from any capabilities’ and leaves were only removed from a node, Mission, which
received the same value from its remaining child.

2This could happen if we were propagating constraints from committed nodes to potential nodes.

VIPs: 14,7 VIPs: 2,3 VIPs: 2
Resource Units:4 Resource Units: 3 Resource Units: 2

Figure 7: Task decomposition after removal of D1.

Domain: 14,7
Resource Units: 5

Domain: 14,7
Resource Units: 4

Figure 8: Constraint graph after D2 has been added.

Since Mission has only one child it is selected using select-subtask. T2’s children are ORed
together, so Alt-T2-1 is selected. Its single alternative is selected and added to the constraint graph,
as shown in Figure 8. When D2 is added to the constraint graph, constraints are checked. All of
the constraints are violated because resource units required for D1 and D2 are greater than any
VIP’s allotment of 5. When D2 is made adjacent to C1, the system notices the constraint violation.
Both domains have the same number of values, so we remove VIP1 from the domain which requires
the least resources. VIP1 is removed from the domain of D2. D2 is no longer adjacent to that
constraint. When D2 is made adjacent to C4, the resource limits of VIP4 are also violated. Because
D1 has the most values in its domain, VIP4 is removed from that domain. Circumstances for C7
are similar to those for C1, so VIP7 is removed from the domain of D2. The resulting constraint
graph is shown in Figure 9.

When this capability is removed from the task decomposition graph, all of Mission’s children are
removed, so Mission is removed. Since no nodes remain in the task decomposition, the formation
of the constraint graph is complete. We now proceed with the original CHS algorithm. Using the
same textures as for propagating constraints above, we choose a value for the only variable node
whose domain requires further restriction, D1. Since both of the remaining values appear equally
useful according to the heuristics, we arbitrarily select VIP1.

Our method has found an acceptable task assignment. However, it may appear odd that the

Domain: 1,7
Resource Units: 5

Domain: 4
Resource Units: 4

Figure 9: Constraint graph after constraints propagated for D2.

same capability was selected for both tasks, requiring the same VIPs, when other capabilities could
have been chosen. There are two ways to ensure that this does not create problems. We will
examine them in future work. First, we will look at propagating constraints to potential values.
This will remove values form the domains of capabilities still in the task decomposition tree when a
VIP’s resources are exceeded. This, in turn, will decrease the desirability of adding the capability
to the constraint graph. The second possibility is to change our heuristics for selecting capabilities.
This will give us better information, but will increase the complexity for our heuristics.

5 Conclusions

We are currently implementing a version of our approach in CommonLISP. This implementation
will be added to our simulator [2] to perform task assignment. The current implementation allows
us to get initial results and provides a framework for future experimentation.

As work continues on this project, we will refine our extension to CHS. We will also implement
and test heuristics for different textures to be applied during both the original CHS and our
extension. In addition, we will integrate our select-capability operator with CHS. Finally, we
plan to implement a version of task assignment which can be distributed between all members of
the MLO.

References

[1] M. S. Fox, N. Sadeh, and C. Baykan. Constrained heuristic search. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), 1989.

[2] R. M. Turner, E. H. Turner, and D. R. Blidberg. Organization and reorganizing of au-
tonomous oceanographic sampling networks. In Proceedings of the 1996 Symposium on
Autonomous Underwater Vehicle Technology (AUV’96), Monterey, CA, 1996.

[3] R. M. Turner and E. H. Turner. Adaptive organization and reorganization of autonomous
oceanographic sampling networks. Submitted to the Journal of Applied Intelligence.,
submitted.

[4] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained heuristic search. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6):1446-1461, 1991.

[6] R. M. Turner, D. R. Blidberg, S. G. Chappell, and J. C. Jalbert. Generic behaviors:
An approach to modularity in intelligent systems control. In Proceedings of the 8th
International Symposium on Unmanned Untethered Submersible Technology (AUV’93),
Durham, New Hampshire, 1993.

