In the Proceedings of the 1996 IEEE Symposium on
Autonomous Underwater Vehicle Technology.

Organization and Reorganization of Autonomous
Oceanographic Sampling Networks-

Roy M. Turner

Department of Computer Science

University of Maine
Orono, ME 04469 USA
rmt@umcs.maine.edu

Elise H. Turner

Department of Computer Science

University of Maine
Orono, ME 04469 USA
eht@Qumecs.maine.edu

D. Richard Blidberg
Marine Systems Engineering Laboratory
The Autonomous Undersea Systems Institute
86 Old Concord Turnpike
Lee, NH 03824 USA
drb@bluefin.net

ABSTRACT

Systems such as autonomous oceanographic sampling
networks (AOSNs) that have multiple autonomous or
semi-autonomous components must have an organization
which specifies the interactions between the components
to allow them to distribute and accomplish the system’s
tasks. AOSNs present a special challenge. They will
be deployed for long periods of time, and they are open
systems whose composition will change over time. Such
systems require the ability to autonomously organize and
reorganize in response to changes in its composition, the
environment, or the mission.

In this paper, we present preliminary results from a
project whose goal is to develop mechanisms to allow
AOSNSs to self-organize and reorganize. We discuss char-
acteristics of AOSNs which impact their organization and
give an overview of an approach which addresses their
special requirements. We discuss a simulation methodol-
ogy designed to simulate the aggregate properties of the
protocols developed, and we describe preliminary results
obtained using that simulator.

*This work was funded in part by contract N0001-14-96-1-5009
from the Office of Naval Research and grant number NSF BES-
9222146 from the National Science Foundation. We thank Steve
Chappell for helpful comments on an earlier draft of this pa-
per. © 1996 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be
obtained from the IEEE.

I INTRODUCTION

In the near future, networks of vehicles and non-mobile
instrument platforms (VIPs) will be deployed for ex-
tended periods to perform a variety of tasks. Au-
tonomous ocean sampling networks (AOSNs) [Curtin
et al., 1993] are examples of such networks. To take
full advantage of the variety of VIPs available, AOSNs
should be developed that are not constrained to use only
specific types of component VIPs. To allow the networks
to work efficiently for long periods, AOSNs must allow
VIPs to enter the system as they become available and
leave the system when they fail or are needed elsewhere;
that is, AOSNs are open systems [Hewitt, 1986]. In ad-
dition, AOSNs must be able to take on a variety of tasks
while they are deployed. The system may be given sev-
eral tasks to complete at the time of its deployment, and
the current task may change or be interrupted by a higher
priority task. A new task may also be added during the
mission by a human operator or in response to unantici-
pated features of the environment.

This paper describes a project aimed at developing in-
telligent control mechanisms for AOSNs and other multi-
component systems. Our approach is to test design de-
cisions in a simulator which demonstrates the aggregate
behavior of the design. This allows us to evaluate the
overall design before incurring the expense of a complete
implementation in a more traditional simulator or on de-
ployed vehicles. In this paper, we present preliminary re-
sults for our project. In the following section, we discuss
some properties of the AOSN control task. Section III
describes our approach to the problem. Section IV dis-
cusses our simulation method and Section V describes

our initial simulation of protocols for organization and
reorganization of AOSNs. Finally, the lessons learned
and future directions are presented in Section VI.

II ORGANIZATION AND AOSNSs

One important aspect of intelligent control for multi-
component systems is providing the organization which
allows the components to work together to complete their
task. The organization specifies which components con-
trol which others, the pathways for communication, and
the information which should be communicated. There
are organizational structures, or types, such as hierar-
chies, that specify the relationships in a general way.
However, each assignment of components to roles within
an organizational structure should be seen as a distinct
organization. Protocols can be specified for a particular
type of organization to describe what information should
be communicated and how agents (i.e., VIPs) should act
in specific situations. In addition to specifying the details
of the organization’s structure, we must also specify how
to achieve the mission goals within that organization.

Long-duration, flexible systems such as AOSNs have
some special requirements for organizations that have not
been addressed in previous systems:

The system must be able to organize and re-
organize itself autonomously. As VIPs enter or leave
the system, or the task changes, the existing organization
may no longer be effective. To allow the system to work
without human intervention, the system itself must be
able to recognize the need for change and to create a
new organization.

It is also advantageous for the system to be able to cre-
ate its initial organization autonomously. Because each
deployment of an AOSN may have different tasks and
component VIPs, forming the initial organization is a
non-trivial task requiring knowledge about which orga-
nizational structures are best for the current situation,
which roles in the organization require which capabili-
ties, and which VIPs have these capabilities. In order to
re-organize, the AOSN must have this information and
the ability to use it. A human operator, for example, an
ocean scientist, should not have to have this expertise.
By allowing the AOSN to create its own initial organiza-
tion, the human operator is relieved of this responsibility.

A single organization may not be equally useful
for both organization and mission-related tasks.
During organization/reorganization, the AOSN should
not necessarily deal with the detailed knowledge of sub-
tasks necessary for accomplishing the mission, but rather
with the overall properties of agents and how best to as-
sign them to tasks; communication channels should al-
low agents to exchange information with any other agent
that might have strategic knowledge or abilities impor-

tant to setting up an organization to accomplish the mis-
sion. During actual work on the mission, overall strate-
gic knowledge may be less important than knowledge
about how that task should be performed; communica-
tion should be more local and should encourage focused
information exchange about tasks that are underway.

Some, but not all, of the VIPs have the ability
to reason independently. Organization of multiagent
systems has been addressed in the distributed artificial
intelligence (DAI) literature [e.g., Fox, 1981; Smith, 1980;
Durfee & Lesser, 1987]. However, most DAI approaches
explicitly or tacitly assume that all of the agents involved
have the same level of cognitive capabilities: either they
are all full-fledged problem-solving systems, or they are
all simpler systems. In contrast, an AOSN is a heteroge-
neous system in which some VIPs are “intelligent”, some
less so, and some are little more than simple instruments
with some communication mechanism attached.

The distinction is important for two reasons. First, the
ability to reason is important for performing many tasks
in many different organizations. Specifically, it is needed
for an agent to reason about the organization of the sys-
tem. Second, new kinds of organizational structures, or
new takes on existing structures, will have to be devel-
oped if both types of agents are to be integrated into a
single organization. For example, we may form the non-
reasoning VIPs into distributed systems that function as
a single VIP within the broader organization. Alterna-
tively, we may create only organizations which ensure
that each non-reasoning VIP is directed by a VIP which
can reason.

III META-LEVEL AND TASK-LEVEL ORGANIZATIONS

We take a two-level approach that tries to match the or-
ganizational style to the task at hand. The actual work
performed in accomplishing a mission is conducted in
the context of a task-level organization, or TLO. Prob-
lem solving aimed at creating this organization or re-
organizing it when there is a change is conducted in
a different organization, the meta-level organization, or
MLO. By explicitly splitting the work needed for organi-
zation/reorganization of the AOSN from that needed to
accomplish its mission, the AOSN is free to use whichever
organizational style is most appropriate for each type of
work.

Meta-level organization. We make a minimally
constraining assumption: the AOSN is deployed as an un-
organized collection of VIPs. Some within this group will
have the ability to participate in an MLO, some will not.
Those that can (called the MLO-agents) will self-organize
to form an MLO. Self-organization occurs based on sim-
ple protocols designed to allow MLO-capable agents to

discover each other’s existence, as discussed in more de-
tail below.

Once formed, the MLO’s job is to devise an appropri-
ate TLO for the current task. This involves two major
tasks: discovery of resources and matching those to the
demands of the task to create the TLO. The first of these
involves identifying the capabilities of all agents in the
AOSN. Some knowledge may already exist about some
VIPs. For others, messages will have to be broadcast to
first discover their existence.

Armed with the knowledge about the AOSN, the MLO
can then decide on an appropriate TLO. There are many
ways this can be done: a single agent can act as plan-
ner, the entire set can collaboratively create the TLO,
etc. Below, we discuss one way we have simulated so
far. There are also many task-allocation methods based
on the capabilities discovered by the MLO: first-fit of
VIP to task, best-fit, minimizing slack resources, etc. As
discussed below, we have implemented a simple first-fit
approach to assign VIPs to tasks.

When the TLO has been designed, messages are sent
assigning roles to VIPs. The MLO is then dissolved and
work begins on the mission by the TLO.

Task-level organization. There are myriad possible
task-level organizations. We are primarily interested in
organization and reorganization of AOSNs at this stage
of our work. Consequently, we have chosen to use simple
hierarchical TLOs.

TLOs in our approach are hierarchies of two or more
layers. Roles within the hierarchy are assigned based
on VIP capabilities, including (e.g.) the ability to func-
tion as a manager. Ultimately, we will experiment with
allowing peers to communicate with one another while
working on tasks for information exchange and to utilize
slack resources; this should reduce message traffic while
increasing overall TLO performance.

We recognize that a hierarchical organization is prone
to particular kinds of failures, including those related to
weak links, cognitive overload, and other single-points of
failure. A conjecture to be tested by our research is that
such failures can be overcome in a two-layer approach
such as ours by the reformation of the MLO when there
is a failure.

Reorganization. Changes in the situation can often
be handled without disrupting the TLO. For example, a
failed VIP—or one that must leave the system for some
other reason—might be noticed by its manager, which
would reassign its tasks to other VIPs under its control
with sufficient slack resources. Sharing some informa-
tion across levels, such as a manager knowing who its
controlled VIPs control, can even protect against some
failures of managers. New VIPs can sometimes be han-
dled similarly, with existing managers either assigning
the VIP to tasks it has or passing the VIP off to its man-

ager for assignment elsewhere. Some changes, however,
necessitate changing the TLO organization. For exam-
ple, should the top-level manager fail, the TLO would es-
sentially be left “headless”, with no coordination for the
integration of the mission’s major tasks. Other changes
can also indicate that the TLO in its current form is sim-
ply not working, or not working as well as it could.

The first task facing a TLO and its VIPs is recognizing
when a reorganization is necessary. Obviously the top-
level agent is in a position to notice this; however, it may
not be the only one.

Once it has been noticed that something is wrong, the
next question is what to do about it. In our approach, the
answer is to initiate the reformation of the MLO, which
will then reorganize the AOSN to create a new TLO.

Representing capabilities: generic behaviors. In
our approach, all VIPs are reasoned about primarily by
considering only their capabilities. To an MLO-agent,
another agent is simply a collection of capabilities, or be-
haviors, that can be matched up to the requirements of
the mission at hand. This provides us with an abstrac-
tion that allows ignoring the physical idiosyncrasies of
the particular VIP.

To do this, a representation scheme for behaviors is
needed. We make use of work on generic behaviors, or
GBs, resulting from another of our projects [Turner et al.,
1993]. A generic behavior describes a particular behavior
of a VIP, including the preconditions for that behavior to
occur, the effects of it having occurred, its time course,
and resources required. For example, an AUV might have
GBs representing “goto location”, “dock”, “hover”, vari-
ous sensor capabilities, etc. Though the implementation
details are not important for this paper, GBs can be im-
plemented as data structures similar to frames.

IV THE SIMULATOR

To evaluate our approach, we are developing a simula-
tor that simulates the aggregate properties of the pro-
tocols we develop. Systems which implement reasoning
capabilities for agents are notoriously large, taking many
person-years to program. Waiting until a prototype sys-
tem is built before evaluating the approach runs the risk
of wasting these resources. In addition, these complex
systems are often difficult to evaluate. Because of the
interactions within the system, it is hard to identify the
exact effect of any individual design decision. Because of
the cost of programming, it is hard to experiment with
alternatives.

Our simulator steps back from the traditional proto-
type implementation to focus on the aggregate proper-
ties of the system. For example, suppose we are eval-
uating protocols for communication used to set up the
initial MLO. In a traditional prototype implementation,

we would have to implement the algorithm which selects
the information to fill the protocols. In the aggregate
simulator, we can simulate the effects of the algorithm
having run, simply by giving VIPs the information that
they should receive from the protocol.

The simulator is a rule-based system implemented in
CLIPS [Giarratano, 1993]. CLIPS is a widely-used expert
system shell, so, after the simulator has been developed,
it can be made available to other researchers. The rule-
based system implementation also allows us to use a top-
down approach to evaluation. For example, we may begin
with a very abstract rule for communication. This rule
can then be replaced with rules which specify when and
how a VIP makes the decision to communicate. The
more detailed communication rules can be replaced again
with rules that reflect the possibility of lost messages. In
this way, we first test the need for the information that
will be communicated, then the method for selecting the
information, and next the value of the communication
method given real world constraints. Finally, by linking
C to CLIPS, we can implement and test the algorithm
for communication that will be used by actual VIPs.

V SIMULATION OF PROTOCOLS

In this section, we describe the AOSN protocols embod-
ied in an initial version of our simulator and the results
we have so far obtained. The protocols we have imple-
mented are at a fairly high level of abstraction, which al-
lows us to get a sense of how our overall approach works
and where weaknesses may lie.

The activity of an AOSN falls naturally into several
phases, including: (1) formation of the MLO; (2) dis-
covery by the MLO of the capabilities of the AOSN (or
updating the MLO’s information since the last time it
was in existence); (3) decision by the MLO of what TLO
to use to achieve the mission; (4) creation of the TLO;
and (5) work on the mission by the TLO. In addition, we
can think of phases corresponding to handling errors or
other changes in the situation or AOSN (e.g., addition or
failure of a VIP).

CLIPS, like other forward-chaining rule-based sys-
tems, lends itself to structuring by contexrts in which
rules fire, implemented by adding a clause to rule an-
tecedents checking for the appropriate context in which
the rules should fire. We have therefore created contexts
corresponding to each of the AOSN’s phases of oper-
ation (MLO-formation, MLO-discovery, MLO-decision,
TLO-formation, TLO-work, and error) as well as some
(e.g., MLO-formed) that are used for housekeeping func-
tions.

After we briefly touch on our representation (e.g., of
VIPs), the remainder of this section is structured around
these phases/contexts. For each, we discuss the proto-

cols simulated, briefly describe the rules used to simulate
them, and show some representative output from the sim-
ulator.

Representation. All knowledge in CLIPS is repre-
sented as either rules or facts in working memory. Facts
can either be predicate calculus-like assertions or in-
stances of “templates”, which are frame-like slot-filler
structures. VIPs, for instance, are represented as a tem-
plate that looks like:

(vip (name vipl) (caps a c f)
(location 1 1 1))

That is, a VIP named “vipl”, with capabilities (generic
behaviors) “a”, “c”, and “f”, and that is currently at
location (1,1,1).

For ease of generating experiments, capabilities are
represented generically as symbols rather than as actual
generic behavior names. There is one distinguished be-
havior, “C”, that means the agent is capable of partici-
pating in an MLO.!

Tasks are also represented as template instances.
Tasks can have several alternative ways of being accom-
plished, each of which requires a particular set of capa-
bilities. VIPs are assigned to tasks based on this infor-
mation.

Other facts in memory include such things as a repre-
sentation of a fact an agent knows (e.g., “AUV1 knows
VIP1 has capabilities a g {”) and various kinds of infor-
mation needed for the implementation of the protocols
as rules.

MLO formation phase. In this phase, the individ-
ual MLO-capable agents are concerned with determining
if there is an existing AOSN organization and, if not,
creating one. One can think of either the entire AOSN
or an individual agent being in this phase, the former
when there is no existing organization and the latter
when there is one, but the agent does not know about
it.

The general protocol followed by an agent in this phase
is as follows. When an MLO-agent finds that it does not
know of the existence of an organization, it broadcasts?
a “who’s there” message tailored to elicit responses from
other MLO-agents. (Since non-MLO-agents cannot par-
ticipate in the MLO, they are not involved in this phase.)
If there is an existing TLO, then members hearing the
message will respond; the agent will select one of the
ones responding and contact it to join the TLO. If there
is an existing MLO, then one of the MLO members will

L«C” stands for “CDPS-capable”, meaning that it is capable of co-
operative distributed problem solving—i.e., it is an MLO-agent.

2We use the term “broadcast” loosely to mean “tries to get a
message to all other agents” of whatever type desired; the im-
plementation will vary depending on the assumptions about the
underlying communication network.

(SIM: switching context -> MLO-formation)
[...]
(MLO) AUV1 broadcasting ‘who’s there’ message.
(MLD) AUV2 broadcasting ‘who’s there’ message.
(MLDO) Convention chooses AUVl to initiate MLO.
(MLO) AUV1 broadcasts ‘mlo-exists’ message;
others update their knowledge.

(MLO) MLO contains members (AUV1 AUV2).

Figure 1: MLO formation phase.

respond; at that point, the agent can send a message say-
ing in essence: “here’s my location and I want to join the
MLO”. The MLO will then update its knowledge (see
below) and the new agent will be in.

The more interesting situation is when there are no
existing organizations. In that case, all MLO-agents will
be trying to discover who else is “out there”. After some
time, when there is no reply by an agent that is part of
an existing organization, the agents assume that there
is no MLO and that they know about all other MLO-
agents. One of them (determined by conventions to be
developed) initiates MLO creation by sending a message
to the others saying it exists.

In the simulator, several rules simulate the aggregate
behavior of this protocol. When there is no MLO, a rule
fires to add agents to a blank MLO structure (i.e., a fact
in CLIPS’ working memory) and another asserts that the
MLO has been formed. At that point, another rule moves
the simulator into the next phase.

Figure 1 shows an example from the simulator during
this phase.

MLO discovery phase. This phase is concerned with
discovering the AOSN’s total capabilities in terms of the
collection of all the VIPs’ generic behaviors. We cur-
rently simulate two different protocols during this phase.
One involves no hierarchical structure: all non-MLO-
agents communicate freely with all MLO-agents. This
is called the “flat” form of the MLO. The other is one
in which an MLO-agent controls those non-MLO-capable
VIPs that are closest to it; this is the “hierarchical” MLO
form. Rules for both are in the simulator; the user asserts
an “MLO-form” fact to switch between the two forms.

Regardless of the form of the MLO being simulated,
each MLO-agent tells its peers (via broadcast or a set
of messages) about its location and capabilities; this
establishes some common knowledge among the mem-
bers of the MLO. Each MLO agent also broadcasts a
“who’s there” message aimed at eliciting responses from
non-MLO-agents. It is important for all of them to do
this, since not all VIPs may be reachable by all MLO-
agents due to properties of the underlying communica-
tion medium.

In the flat version of the MLO, each VIP responds with

(MLO) Agents are attempting to discover other
VIPs.

(MLO) AUV1 broadcasting ‘who’s there’ message.

(MLO) AUV2 broadcasting ‘who’s there’ message.

(MLO) AUV2 --> AUV1: I have capability(ies)
(beCf), and I’m at location (10 10 10).

(MLO) AUV1 --> AUV2: I have capability(ies)
(adCe), and I’'m at location (0 O 0).

(MLO) vipl --> AUV1: I am at (1 1 1).
(MLO) vipl --> AUV2: I am at (1 1 1).
(MLO) vip2 --> AUV1: I am at (5 5 5).
(MLO) vip2 --> AUV2: I am at (5 5 5).

(MLO) Closest MLO agent AUV1 now controls vipl
(MLO) AUV1 --> vipl: tell me your capabilities.
(MLO) vipl --> AUV1: I have capabilities (a g f).
(MLO) Closest MLO agent AUV1 now controls vip2
(MLO) AUV1 --> vip2: tell me your capabilities.
(MLO) vip2 --> AUV1: I have capabilities (a b d).
[...]
(MLO) MLO formation complete.

Figure 2: MLO discovery phase.

its location and its capability list. Any MLO-agent that
believes that it has unique knowledge of the VIP tells
the others about it. When the message traffic ceases, all
MLO-agents have common knowledge about the AOSN’s
capabilities.

In the hierarchical form as currently simulated, VIPs
respond with their location to the “who’s there” mes-
sages. If an MLO-agent believes that it has sole knowl-
edge of the VIP, or that it is the closest to the VIP
(based on common knowledge of other MLO members’
locations), then it becomes the controller of that VIP.
This is done via shared conventions rather than message-
passing between the MLO members. At that point, it
sends a message to the VIP requesting the VIP’s capa-
bilities, and the VIP responds to it.

There are many rules for this phase in the simula-
tor, for example, rules to simulate the broadcast “who’s
there” message and an MLO-agent telling about itself.

Figure 2 shows the simulation of discovery in a hierar-
chical MLO.

MLO decision and TLO formation phases. These
are the phases in which the MLO agents determine the
form of the TLO that will accomplish the mission. The
protocol we are currently simulating has the MLO se-
lect one of its members as a planning agent based on a
very simple convention: the first one appearing in work-
ing memory is selected. This simulates conventions that
a real MLO might use, such as choosing an agent based
on an alphabetical ordering of the agents’ names. Other
mechanisms could be used; in particular, in the near fu-
ture we will be looking at those suggested by Cammarata
et al. [1983], such as “select least constrained agent”.

(MLD) Selecting AUV1 as planner (convention:

first in MLO).

(MLO) Planner AUVl querying others about
capabilities they may contribute for
tasks: (task2 taskl).

(MLD) AUV2 --> AUV1: these agents may work:
(AUV2).

(MLO) Planner AUV1 directly knows that
agents (vip2 vipl AUV1) may work.

(MLO) AUV1 deciding on TLO.

(SIM: switching context -> TLO-formation)

(MLO) AUV1: informing other agents about
VIP <-> task assignment.

[...]

(MLD) Vips assigned to taskl: (vip2 AUV1)

(MLD) Vips assigned to task2: (vip1l)

(MLO) AUV1: dissolving the meta-level
organization.

Figure 3: MLO decision and TLO formation phases.

The planner then decides which capabilities it needs for
its tasks. If the MLO is flat, then the planner has all the
knowledge it needs. If hierarchical, then the planner asks
each other MLLO member if it has any of the capabilities
needed for any of the tasks, or if any VIP it controls
does. If so, the member reports which VIPs (including
itself) might be useful. The planner then assigns VIPs
to tasks, and assigns managerial roles, again based on
the capabilities of the agents. This is currently done by
C functions that implement a first-fit of capabilities to
tasks and return the results to CLIPS; the simulation of
managerial role assignment is not yet implemented.

The last thing that happens in the TLO formation
phase is that the MLO is dissolved until needed again.

Rules for these phases select the planner, create rep-
resentations of capabilities of VIPs and those that are
needed for the tasks, and call the C functions. The simu-
lator has complete knowledge of VIP capabilities, so the

(TLO) Assignment and acknowledgment messages
exchanged.
(TLD) Beginning work on task taskl.
(TLO) Assignment and acknowledgment messages
exchanged.
(TLD) Beginning work on task task2.
>> Enter an assertion (or ’go’ or ’quit’):
(status taskl done)
[...]
>> Enter an assertion (or ’go’ or ’quit’):
(status task2 done)
[...]
(TLO) All tasks are done.
(SIM: switching context -> MLO-formation.)

Figure 4: TLO work done.

** Error in task task3 detected **
(SIM: switching context --> error)

(TLO) Can’t handle error in task3 within TLO.
(TLO) Unrecoverable error in task task3;
trying to reinvoke the MLO.

(TLO)

(SIM: leaving error context —--> MLO-formation)
[...]

(MLO) MLO contains members (AUV1 AUV2).
[...]

(MLO) MLO taking error into account, work
continuing on task3.

[...]
(SIM: switching context -> TLO-work.)

Figure 5: Simulation of error handling.

“messages” sent by MLO-agents in the hierarchical form
contain only the names of VIPs.

Figure 3 shows a simulation of these phases for a hier-
archical MLO.

Other phases. At the time of writing, we have not
yet completed simulation of the TLO work phase, the
phase in which the mission is actually accomplished by
the AOSN. We simulate this now by having CLIPS ask
for facts the user wishes to enter to change the state of
the simulation, including changing the status of a task
(e.g., to “done” or “error”).

When all tasks are done, the TLO is dissolved and a
new MLO forms, as shown in Figure 4.

At this point, the MLO formation process occurs again,
shortened this time due to prior knowledge the MLO-
agents have about the AOSN. If there is nothing left to
work on, then the simulator accepts input from the user
within the context of the MLO being present; this simu-
lates the MLO waiting for something to do.

When an error occurs during the TLO work phase,
the TLO attempts to handle it itself. If it can, then
work continues. If not, then the MLO is re-formed to
handle the task from its more global, less constrained
perspective. It may be able to patch the existing TLO,
or it may have to create a new TLO for the changed
situation.

Figure 5 shows the skeleton of how errors will be sim-
ulated; the rules currently present are essentially place-
holders for more concrete rules to be developed in the
future.

VI DISCUSSION

In this paper, we have argued for two things, a particular
approach to the problem of controlling an AOSN and
a general simulation methodology for such approaches.
We have begun the task of designing the protocols for
the two-level organizational structure and implementing
them in the simulator.

With respect to the simulation methodology, our ex-
perience so far leads us to believe that it will be quite
useful. The learning curve for CLIPS is not very steep,
and it was relatively easy to code the abstract protocols
existing at this stage. The interface between CLIPS and
C is straightforward, though adding custom C functions
does require recompiling part of CLIPS, and C cannot ac-
cess all the information that one might want. However,
this tends to encourage the implementor to use CLIPS
rules for as much as possible, which is good at this point
in the project: it keeps the knowledge (e.g., protocols,
etc.) explicit, hence easier to examine and change.

The if-then structure of production rules seems very
natural for capturing the flavor of the protocols, at least
at the current level of detail. Most of our descriptions of
what agents and organizations do are either already in
such rules or are easily put in that form.

Simulating the aggregate properties of a set of proto-
cols worked well, too, rather than directly implementing
the protocols in code, then running that code in a simula-
tion testbed. Those of us in AT have had much experience
with the latter kind of simulation. It tends to be time-
consuming, and it tends to lock one into design decisions
because of the substantial commitment of time and cod-
ing effort before the design can be tested. Consequently,
one often finds oneself patching implementations rather
than designs. The approach taken here has already al-
lowed us to test some design decisions with relatively
little effort. For example, we are trying both a flat and
a hierarchical MLO to see which performs best from the
standpoint of message traffic. To try a new design al-
ternative such as this requires little more than writing a
handful of rules.

Although this project is less than two months old at
the time of writing, using the simulation methodology we
describe has already allowed us to progress to the point
where we can simulate the overall flow of the approach
and begin to make concrete statements about the relative
merits of one protocol choice versus another. We would
have been hard-pressed to have progressed so far in so
short a time otherwise.

In the near future, we will complete the first draft de-
sign of the protocols for our approach and test them in
the simulator. Our goal is to run a set of simulation ex-
periments to evaluate our design in mid-autumn of this
year. In the second year of the project, the protocols will
be made more concrete by specifying such details as mes-
sage types and content, and design flaws will be fixed that
may have surfaced during the first year. Future phases of
the project will implement the protocol, with evaluation
both in simulation testbeds such as SMART [Turner et al.,
1991] and in the water using AUVs and other instrument
platforms.

REFERENCES

Cammarata, S., McArthur, D., & Steeb, R. (1983).
Strategies of cooperation in distributed problem solv-
ing. In Proceedings of the 1983 International Joint
Conference on Artificial Intelligence, pages 7T67-770.

Curtin, T., Bellingham, J., Catipovic, J., & Webb, D.
(1993). Autonomous oceanographic sampling net-
works. Oceanography, 6(3).

Durfee, E. H. & Lesser, V. R. (1987). Using partial
global plans to coordinate distributed problem solvers.
In Proceedings of the 1987 International Joint Confer-
ence on Artificial Intelligence, pages 875-883.

Fox, M. S. (1981). An organizational view of distributed
systems. [IEEE Transactions on Systems, Man and
Cybernetics, 11:70-80.

Giarratano, J. C. (1993). CLIPS User’s Guide. NASA,
Information Systems Directorate, Software Technol-
ogy Branch, Lyndon B. Johnson Space Center, Hous-
ton, TX.

Hewitt, C. (1986). Offices are open systems. Communi-
cations of the ACM, 4(3):271-287.

Smith, R. (1980). The contract net protocol: High-
level communication and control in a distributed prob-
lem solver. IEFEE Transactions on Computers, C—
29(12):1104-1113.

Turner, R. M., Blidberg, D. R., Chappell, S. G.,
& Jalbert, J. C. (1993). Generic behaviors: An
approach to modularity in intelligent systems con-
trol. In Proceedings of the 8th International Sympo-
sium on Unmanned Untethered Submersible Technol-
ogy (AUV’93), Durham, New Hampshire.

Turner, R. M., Fox, J. S., Turner, E. H., & Blidberg,
D. R. (1991). Multiple autonomous vehicle imaging
system (MAVIS). 1In Proceedings of the 7th Inter-
national Symposium on Unmanned Untethered Sub-
mersible Technology (AUV °91).

